46 lines
1.3 KiB
ReStructuredText
46 lines
1.3 KiB
ReStructuredText
Probability Distribution Functions
|
|
------------------------------------
|
|
|
|
Probability Density Function
|
|
=============================
|
|
|
|
The Probability Density Function (PDF) is function defined for a random variable :math:`X` such that:
|
|
|
|
.. math::
|
|
\forall (a,b) \in \mathbb{R}^2,\, P(a \le X \le b) = \int_a^b f_X(x)dx
|
|
|
|
Properties:
|
|
|
|
#. :math:`\int_{-\infty}^{+\infty} f_X(x)dx=1`
|
|
#. :math:`P(X=a)=\int_{a}^{a} f_X(x)dx=0`
|
|
|
|
From property *2* it can be derived that (`source <http://yallouz.arie.free.fr/terminale_cours/probascont/prob-continue.php>`__):
|
|
|
|
.. math::
|
|
P(a \le X \le b) &= P(a < X \le b) =P(a \le X < b) =P(a < X < b)
|
|
|
|
P(a \ge X) &= P(a > X) = 1-P(a < X) = 1-P(a \le X)
|
|
|
|
The PDF of a random variable is intimately related to its :ref:`CDF <CDF>` with the following relation:
|
|
|
|
.. math::
|
|
F_X(x)=\int_{-\infty}^x f_X(t)dt
|
|
|
|
To illustrate this property let's take an example with the exponential distribution defined as follow:
|
|
|
|
.. math::
|
|
f(x;\lambda) = \begin{cases}\lambda e^{ - \lambda x} & x \ge 0,\\ 0 & x < 0.\end{cases}
|
|
|
|
Let's compute its CDF:
|
|
|
|
.. math::
|
|
F(x;\lambda)=\int_{0}^x \lambda e^{-\lambda t}dt = -\int_{0}^x -\lambda e^{-\lambda t}dt &= - \left[ e^{-\lambda t} \right]_{0}^x
|
|
|
|
&=1 -e^{-\lambda x}
|
|
|
|
.. _CDF:
|
|
|
|
Cumulative Distribution Function
|
|
=================================
|
|
|
|
The Cumulative Distribution Function (CDF)
|