Minor changes

This commit is contained in:
Loïc Guégan 2023-10-17 12:31:21 +02:00
parent dd5dc2b81d
commit 223549a088

View file

@ -1,4 +1,46 @@
Probability Distribution Functions
------------------------------------
todo CDF and PDF
Probability Density Function
=============================
The Probability Density Function (PDF) is function defined for a random variable :math:`X` such that:
.. math::
\forall (a,b) \in \mathbb{R}^2,\, P(a \le X \le b) = \int_a^b f_X(x)dx
Properties:
#. :math:`\int_{-\infty}^{+\infty} f_X(x)dx=1`
#. :math:`P(X=a)=\int_{a}^{a} f_X(x)dx=0`
From property *2* it can be derived that (`source <http://yallouz.arie.free.fr/terminale_cours/probascont/prob-continue.php>`__):
.. math::
P(a \le X \le b) &= P(a < X \le b) =P(a \le X < b) =P(a < X < b)
P(a \ge X) &= P(a > X) = 1-P(a < X) = 1-P(a \le X)
The PDF of a random variable is intimately related to its :ref:`CDF <CDF>` with the following relation:
.. math::
F_X(x)=\int_{-\infty}^x f_X(t)dt
To illustrate this property let's take an example with the exponential distribution defined as follow:
.. math::
f(x;\lambda) = \begin{cases}\lambda e^{ - \lambda x} & x \ge 0,\\ 0 & x < 0.\end{cases}
Let's compute its CDF:
.. math::
F(x;\lambda)=\int_{0}^x \lambda e^{-\lambda t}dt = -\int_{0}^x -\lambda e^{-\lambda t}dt &= - \left[ e^{-\lambda t} \right]_{0}^x
&=1 -e^{-\lambda x}
.. _CDF:
Cumulative Distribution Function
=================================
The Cumulative Distribution Function (CDF)