Probability Distribution Functions ------------------------------------ Probability Density Function ============================= The Probability Density Function (PDF) is function defined for a random variable :math:`X` such that: .. math:: \forall (a,b) \in \mathbb{R}^2,\, P(a \le X \le b) = \int_a^b f_X(x)dx Properties: #. :math:`\int_{-\infty}^{+\infty} f_X(x)dx=1` #. :math:`P(X=a)=\int_{a}^{a} f_X(x)dx=0` From property *2* it can be derived that (`source <http://yallouz.arie.free.fr/terminale_cours/probascont/prob-continue.php>`__): .. math:: P(a \le X \le b) &= P(a < X \le b) =P(a \le X < b) =P(a < X < b) P(a \ge X) &= P(a > X) = 1-P(a < X) = 1-P(a \le X) The PDF of a random variable is intimately related to its :ref:`CDF <CDF>` with the following relation: .. math:: F_X(x)=\int_{-\infty}^x f_X(t)dt To illustrate this property let's take an example with the exponential distribution defined as follow: .. math:: f(x;\lambda) = \begin{cases}\lambda e^{ - \lambda x} & x \ge 0,\\ 0 & x < 0.\end{cases} Let's compute its CDF: .. math:: F(x;\lambda)=\int_{0}^x \lambda e^{-\lambda t}dt = -\int_{0}^x -\lambda e^{-\lambda t}dt &= - \left[ e^{-\lambda t} \right]_{0}^x &=1 -e^{-\lambda x} .. _CDF: Cumulative Distribution Function ================================= The Cumulative Distribution Function (CDF)