Minor changes

This commit is contained in:
Loic Guegan 2023-10-14 18:29:05 +02:00
parent 437e9e736a
commit 64b4cb2bef
2 changed files with 54 additions and 0 deletions

View file

@ -0,0 +1,14 @@
nooutput=sapply(1:3,function(i){
n=10
mu=10
sigma=4
sem=sigma/sqrt(n)
# Compute 1000 times the mean a random sample and get the standard deviation of the mean
means_sd=sd(sapply(1:1000,function(dummy){mean(rnorm(n,mean=mu,sd=sigma))}))
# See how SEM is a good approximation of the mean standard deviation
message(paste("----- Experiment",i,"-----"))
message(paste0("Means SD: ", round(means_sd,digits=2)))
message(paste0("SEM ", round(sem,digits=2)))
})

View file

@ -32,3 +32,43 @@ Null
.. math::
\mathrm{Cov}(X,Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\frac{\sum_{i=1}^n (x_i - \mathbb{E}[X])(y_i - \mathbb{E}[Y])}{n}
Standard deviation
^^^^^^^^^^^^^^^^^^^^^
Standard deviation provides a way to interprete the variance using the unit of :math:`X`.
.. math::
\sigma=\sqrt{\mathbb{V}[X]}
Standard Error of the Mean
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Standard Error of the Mean (SEM) quantifies the error that is potentially made when computing the mean.
.. math::
\mathrm{SEM}=\sigma_X^{-}=\sqrt{\frac{\mathbb{V}[X]}{n}}=\frac{\sigma}{\sqrt{n}}
Here is how to interpret it.
If :math:`n=1`, the error is at most :math:`\sqrt{\mathbb{V}[X]}=\sigma_X` which is the standard deviation or :math:`X`.
The more :math:`n` increases, the lower the error becomes.
More infos in `this video <https://www.youtube.com/watch?v=BwYj69LAQOI>`_.
If it is still unclear, see the following R code:
.. literalinclude:: code/sem.R
:language: R
Output example:
.. code-block:: console
----- Experiment 1 -----
Means SD: 1.22
SEM 1.26
----- Experiment 2 -----
Means SD: 1.26
SEM 1.26
----- Experiment 3 -----
Means SD: 1.27
SEM 1.26