Minor changes
This commit is contained in:
parent
045ba02b67
commit
437e9e736a
1 changed files with 22 additions and 1 deletions
|
@ -10,4 +10,25 @@ Metrics
|
|||
Variance
|
||||
^^^^^^^^^^^^^^
|
||||
|
||||
Variance can be seen as the expected squared deviation from the mean of a random variable :math:`X`.
|
||||
Variance can be seen as the expected squared deviation from the expected value of a random variable :math:`X`.
|
||||
|
||||
.. math::
|
||||
\mathbb{V}[X]=\mathbb{E}[X-\mathbb{E}[X]]^2=\frac{\sum_{i=1}^n (x_i - \mathbb{E}[X])^2}{n}=\mathrm{Cov}(X,X)
|
||||
|
||||
Covariance
|
||||
^^^^^^^^^^^^^^
|
||||
|
||||
Covariance is a way to quantify the relationship between two random variables :math:`X` and
|
||||
:math:`Y` (`source <https://www.youtube.com/watch?v=qtaqvPAeEJY>`_). Covariance **DOES NOT**
|
||||
quantify how strong this correlation is! If covariance is:
|
||||
|
||||
Positive
|
||||
For large values of :math:`X`, :math:`Y` is also taking large values
|
||||
Negative
|
||||
For large values of :math:`X`, :math:`Y` is also taking low values
|
||||
Null
|
||||
No correlation
|
||||
|
||||
.. math::
|
||||
\mathrm{Cov}(X,Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\frac{\sum_{i=1}^n (x_i - \mathbb{E}[X])(y_i - \mathbb{E}[Y])}{n}
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue