diff --git a/source/statistics/code/sem.R b/source/statistics/code/sem.R new file mode 100644 index 0000000..7e3d43e --- /dev/null +++ b/source/statistics/code/sem.R @@ -0,0 +1,14 @@ +nooutput=sapply(1:3,function(i){ + n=10 + mu=10 + sigma=4 + sem=sigma/sqrt(n) + + # Compute 1000 times the mean a random sample and get the standard deviation of the mean + means_sd=sd(sapply(1:1000,function(dummy){mean(rnorm(n,mean=mu,sd=sigma))})) + + # See how SEM is a good approximation of the mean standard deviation + message(paste("----- Experiment",i,"-----")) + message(paste0("Means SD: ", round(means_sd,digits=2))) + message(paste0("SEM ", round(sem,digits=2))) +}) diff --git a/source/statistics/introduction.rst b/source/statistics/introduction.rst index 295f6b3..9fba27b 100644 --- a/source/statistics/introduction.rst +++ b/source/statistics/introduction.rst @@ -32,3 +32,43 @@ Null .. math:: \mathrm{Cov}(X,Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\frac{\sum_{i=1}^n (x_i - \mathbb{E}[X])(y_i - \mathbb{E}[Y])}{n} +Standard deviation +^^^^^^^^^^^^^^^^^^^^^ + +Standard deviation provides a way to interprete the variance using the unit of :math:`X`. + +.. math:: + \sigma=\sqrt{\mathbb{V}[X]} + + +Standard Error of the Mean +^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Standard Error of the Mean (SEM) quantifies the error that is potentially made when computing the mean. + +.. math:: + \mathrm{SEM}=\sigma_X^{-}=\sqrt{\frac{\mathbb{V}[X]}{n}}=\frac{\sigma}{\sqrt{n}} + + +Here is how to interpret it. +If :math:`n=1`, the error is at most :math:`\sqrt{\mathbb{V}[X]}=\sigma_X` which is the standard deviation or :math:`X`. +The more :math:`n` increases, the lower the error becomes. +More infos in `this video `_. +If it is still unclear, see the following R code: + +.. literalinclude:: code/sem.R + :language: R + +Output example: + +.. code-block:: console + + ----- Experiment 1 ----- + Means SD: 1.22 + SEM 1.26 + ----- Experiment 2 ----- + Means SD: 1.26 + SEM 1.26 + ----- Experiment 3 ----- + Means SD: 1.27 + SEM 1.26