Minor changes
This commit is contained in:
parent
b04174fde9
commit
ec9883315f
3 changed files with 73 additions and 1 deletions
|
@ -11,7 +11,7 @@ X3=Xkn(3,0)+Xkn(3,1)+Xkn(3,2)+Xkn(3,3)
|
|||
|
||||
X=c(X0,X1,X2,X3) # This is your final fft
|
||||
|
||||
f0=0/N*fs # k/N*fs
|
||||
f0=0/N*fs # f=k/N*fs
|
||||
f1=1/N*fs
|
||||
f2=2/N*fs
|
||||
f3=3/N*fs
|
||||
|
|
12
source/signal_processing/code/idft.R
Normal file
12
source/signal_processing/code/idft.R
Normal file
|
@ -0,0 +1,12 @@
|
|||
X=fft(c(1,2,3,4)) # Get the DFT of our signal
|
||||
N=4 # Signal size
|
||||
xkn=function(k,n){X[k+1]*exp(2i*pi*(k/N)*n)}
|
||||
|
||||
# Perform the inverse DFT:
|
||||
x0=1/N*(xkn(0,0)+xkn(1,0)+xkn(2,0)+xkn(3,0))
|
||||
x1=1/N*(xkn(0,1)+xkn(1,1)+xkn(2,1)+xkn(3,1))
|
||||
x2=1/N*(xkn(0,2)+xkn(1,2)+xkn(2,2)+xkn(3,2))
|
||||
x3=1/N*(xkn(0,3)+xkn(1,3)+xkn(2,3)+xkn(3,3))
|
||||
|
||||
x=Re(c(x0,x1,x2,x3)) # Take the real
|
||||
stopifnot(any(Im(x)==0)) # Also see how all imaginary parts are 0!
|
|
@ -49,3 +49,63 @@ In depth example
|
|||
Let's take a discrete signal :math:`\vec{x}=\{1,2,3,4\}`, sampled at a frequency :math:`f_s=10 Hz`.
|
||||
|
||||
.. literalinclude:: code/dft.R
|
||||
:language: R
|
||||
|
||||
Now let's do its inverse DFT:
|
||||
|
||||
.. literalinclude:: code/idft.R
|
||||
:language: R
|
||||
|
||||
Understanding how imaginary parts cancel out in during the inverse DFT is important.
|
||||
The periodicity of the DFT plays a key role for that.
|
||||
For our signal :math:`\vec{x}` we have:
|
||||
|
||||
.. math::
|
||||
\vec{X}=\{10+0j, -2+2j, -2+0j, -2-2j\}
|
||||
|
||||
See how :math:`X_1 = \overline{X_3}`. When computing :math:`x_n`, :math:`X_1` becomes:
|
||||
|
||||
.. math::
|
||||
X_1 \cdot e^{j2\pi\frac{1}{N}n} &= ({\color{blue}-2}+{\color{red}2j}) \cdot (cos(2\pi\frac{1}{4}n)+j\cdot sin(2\pi\frac{1}{4}n))
|
||||
|
||||
&= {\color{blue}-2 \cdot cos(2\pi\frac{1}{4}n) -2j \cdot sin(2\pi\frac{1}{4}n)} + {\color{red}2j \cdot cos(2\pi\frac{1}{4}n) -2 \cdot sin(2\pi\frac{1}{4}n)}
|
||||
|
||||
In turn, :math:`X_3` becomes:
|
||||
|
||||
|
||||
.. math::
|
||||
X_3 \cdot e^{j2\pi\frac{3}{N}n} &= ({\color{blue}-2}{\color{red}-2j}) \cdot (cos(2\pi\frac{3}{4}n)+j\cdot sin(2\pi\frac{3}{4}n))
|
||||
|
||||
&= {\color{blue}-2 \cdot cos(2\pi\frac{3}{4}n) -2j \cdot sin(2\pi\frac{3}{4}n)} {\color{red}- 2j \cdot cos(2\pi\frac{3}{4}n) + 2 \cdot sin(2\pi\frac{3}{4}n)}
|
||||
|
||||
Notice that:
|
||||
|
||||
.. math::
|
||||
\forall n:\, & cos(2\pi\frac{1}{4}n) = 0
|
||||
|
||||
& cos(2\pi\frac{3}{4}n) = 0
|
||||
|
||||
& sin(2\pi\frac{1}{4}n) = j
|
||||
|
||||
& sin(2\pi\frac{3}{4}n) = -j
|
||||
|
||||
In particular, see how the symmetry of the DFT leads to opposite values.
|
||||
Plugin in these new values whenever :math:`j` shows up gives the following:
|
||||
|
||||
.. math::
|
||||
X_1 \cdot e^{j2\pi\frac{1}{N}n} &= -2 \cdot cos(2\pi\frac{1}{4}n) + (-2j \cdot j) + (2j \cdot 0) -2 \cdot sin(2\pi\frac{1}{4}n)
|
||||
|
||||
&= -2 \cdot cos(2\pi\frac{1}{4}n) + 2 -2 \cdot sin(2\pi\frac{1}{4}n)
|
||||
|
||||
X_3 \cdot e^{j2\pi\frac{3}{N}n} &= -2 \cdot cos(2\pi\frac{3}{4}n) +(-2j \cdot -j) +(- 2j \cdot 0) + 2 \cdot sin(2\pi\frac{3}{4}n)
|
||||
|
||||
&= -2 \cdot cos(2\pi\frac{3}{4}n) - 2 + 2 \cdot sin(2\pi\frac{3}{4}n)
|
||||
|
||||
As these two terms get summed during the inverse DFT gives:
|
||||
|
||||
.. math::
|
||||
X_1 \cdot e^{j2\pi\frac{1}{N}n} + X_3 \cdot e^{j2\pi\frac{3}{N}n} = -2 \cdot cos(2\pi\frac{1}{4}n) \cancel{+ 2} -2 \cdot sin(2\pi\frac{1}{4}n)\\
|
||||
|
||||
-2 \cdot cos(2\pi\frac{3}{4}n) \cancel{- 2} + 2 \cdot sin(2\pi\frac{3}{4}n)
|
||||
|
||||
An you are left with sum of real signals.
|
||||
|
|
Loading…
Add table
Reference in a new issue