diff --git a/source/signal_processing/code/dft.R b/source/signal_processing/code/dft.R index 3420387..da2eb3d 100644 --- a/source/signal_processing/code/dft.R +++ b/source/signal_processing/code/dft.R @@ -11,7 +11,7 @@ X3=Xkn(3,0)+Xkn(3,1)+Xkn(3,2)+Xkn(3,3) X=c(X0,X1,X2,X3) # This is your final fft -f0=0/N*fs # k/N*fs +f0=0/N*fs # f=k/N*fs f1=1/N*fs f2=2/N*fs f3=3/N*fs diff --git a/source/signal_processing/code/idft.R b/source/signal_processing/code/idft.R new file mode 100644 index 0000000..535f662 --- /dev/null +++ b/source/signal_processing/code/idft.R @@ -0,0 +1,12 @@ +X=fft(c(1,2,3,4)) # Get the DFT of our signal +N=4 # Signal size +xkn=function(k,n){X[k+1]*exp(2i*pi*(k/N)*n)} + +# Perform the inverse DFT: +x0=1/N*(xkn(0,0)+xkn(1,0)+xkn(2,0)+xkn(3,0)) +x1=1/N*(xkn(0,1)+xkn(1,1)+xkn(2,1)+xkn(3,1)) +x2=1/N*(xkn(0,2)+xkn(1,2)+xkn(2,2)+xkn(3,2)) +x3=1/N*(xkn(0,3)+xkn(1,3)+xkn(2,3)+xkn(3,3)) + +x=Re(c(x0,x1,x2,x3)) # Take the real +stopifnot(any(Im(x)==0)) # Also see how all imaginary parts are 0! diff --git a/source/signal_processing/dft.rst b/source/signal_processing/dft.rst index 509c26c..2212440 100644 --- a/source/signal_processing/dft.rst +++ b/source/signal_processing/dft.rst @@ -49,3 +49,63 @@ In depth example Let's take a discrete signal :math:`\vec{x}=\{1,2,3,4\}`, sampled at a frequency :math:`f_s=10 Hz`. .. literalinclude:: code/dft.R + :language: R + +Now let's do its inverse DFT: + +.. literalinclude:: code/idft.R + :language: R + +Understanding how imaginary parts cancel out in during the inverse DFT is important. +The periodicity of the DFT plays a key role for that. +For our signal :math:`\vec{x}` we have: + +.. math:: + \vec{X}=\{10+0j, -2+2j, -2+0j, -2-2j\} + +See how :math:`X_1 = \overline{X_3}`. When computing :math:`x_n`, :math:`X_1` becomes: + +.. math:: + X_1 \cdot e^{j2\pi\frac{1}{N}n} &= ({\color{blue}-2}+{\color{red}2j}) \cdot (cos(2\pi\frac{1}{4}n)+j\cdot sin(2\pi\frac{1}{4}n)) + + &= {\color{blue}-2 \cdot cos(2\pi\frac{1}{4}n) -2j \cdot sin(2\pi\frac{1}{4}n)} + {\color{red}2j \cdot cos(2\pi\frac{1}{4}n) -2 \cdot sin(2\pi\frac{1}{4}n)} + +In turn, :math:`X_3` becomes: + + +.. math:: + X_3 \cdot e^{j2\pi\frac{3}{N}n} &= ({\color{blue}-2}{\color{red}-2j}) \cdot (cos(2\pi\frac{3}{4}n)+j\cdot sin(2\pi\frac{3}{4}n)) + + &= {\color{blue}-2 \cdot cos(2\pi\frac{3}{4}n) -2j \cdot sin(2\pi\frac{3}{4}n)} {\color{red}- 2j \cdot cos(2\pi\frac{3}{4}n) + 2 \cdot sin(2\pi\frac{3}{4}n)} + +Notice that: + +.. math:: + \forall n:\, & cos(2\pi\frac{1}{4}n) = 0 + + & cos(2\pi\frac{3}{4}n) = 0 + + & sin(2\pi\frac{1}{4}n) = j + + & sin(2\pi\frac{3}{4}n) = -j + +In particular, see how the symmetry of the DFT leads to opposite values. +Plugin in these new values whenever :math:`j` shows up gives the following: + +.. math:: + X_1 \cdot e^{j2\pi\frac{1}{N}n} &= -2 \cdot cos(2\pi\frac{1}{4}n) + (-2j \cdot j) + (2j \cdot 0) -2 \cdot sin(2\pi\frac{1}{4}n) + + &= -2 \cdot cos(2\pi\frac{1}{4}n) + 2 -2 \cdot sin(2\pi\frac{1}{4}n) + + X_3 \cdot e^{j2\pi\frac{3}{N}n} &= -2 \cdot cos(2\pi\frac{3}{4}n) +(-2j \cdot -j) +(- 2j \cdot 0) + 2 \cdot sin(2\pi\frac{3}{4}n) + + &= -2 \cdot cos(2\pi\frac{3}{4}n) - 2 + 2 \cdot sin(2\pi\frac{3}{4}n) + +As these two terms get summed during the inverse DFT gives: + +.. math:: + X_1 \cdot e^{j2\pi\frac{1}{N}n} + X_3 \cdot e^{j2\pi\frac{3}{N}n} = -2 \cdot cos(2\pi\frac{1}{4}n) \cancel{+ 2} -2 \cdot sin(2\pi\frac{1}{4}n)\\ + + -2 \cdot cos(2\pi\frac{3}{4}n) \cancel{- 2} + 2 \cdot sin(2\pi\frac{3}{4}n) + +An you are left with sum of real signals.