Minor changes

This commit is contained in:
Loïc Guégan 2023-11-02 11:29:22 +01:00
parent b04174fde9
commit ec9883315f
3 changed files with 73 additions and 1 deletions

View file

@ -11,7 +11,7 @@ X3=Xkn(3,0)+Xkn(3,1)+Xkn(3,2)+Xkn(3,3)
X=c(X0,X1,X2,X3) # This is your final fft X=c(X0,X1,X2,X3) # This is your final fft
f0=0/N*fs # k/N*fs f0=0/N*fs # f=k/N*fs
f1=1/N*fs f1=1/N*fs
f2=2/N*fs f2=2/N*fs
f3=3/N*fs f3=3/N*fs

View file

@ -0,0 +1,12 @@
X=fft(c(1,2,3,4)) # Get the DFT of our signal
N=4 # Signal size
xkn=function(k,n){X[k+1]*exp(2i*pi*(k/N)*n)}
# Perform the inverse DFT:
x0=1/N*(xkn(0,0)+xkn(1,0)+xkn(2,0)+xkn(3,0))
x1=1/N*(xkn(0,1)+xkn(1,1)+xkn(2,1)+xkn(3,1))
x2=1/N*(xkn(0,2)+xkn(1,2)+xkn(2,2)+xkn(3,2))
x3=1/N*(xkn(0,3)+xkn(1,3)+xkn(2,3)+xkn(3,3))
x=Re(c(x0,x1,x2,x3)) # Take the real
stopifnot(any(Im(x)==0)) # Also see how all imaginary parts are 0!

View file

@ -49,3 +49,63 @@ In depth example
Let's take a discrete signal :math:`\vec{x}=\{1,2,3,4\}`, sampled at a frequency :math:`f_s=10 Hz`. Let's take a discrete signal :math:`\vec{x}=\{1,2,3,4\}`, sampled at a frequency :math:`f_s=10 Hz`.
.. literalinclude:: code/dft.R .. literalinclude:: code/dft.R
:language: R
Now let's do its inverse DFT:
.. literalinclude:: code/idft.R
:language: R
Understanding how imaginary parts cancel out in during the inverse DFT is important.
The periodicity of the DFT plays a key role for that.
For our signal :math:`\vec{x}` we have:
.. math::
\vec{X}=\{10+0j, -2+2j, -2+0j, -2-2j\}
See how :math:`X_1 = \overline{X_3}`. When computing :math:`x_n`, :math:`X_1` becomes:
.. math::
X_1 \cdot e^{j2\pi\frac{1}{N}n} &= ({\color{blue}-2}+{\color{red}2j}) \cdot (cos(2\pi\frac{1}{4}n)+j\cdot sin(2\pi\frac{1}{4}n))
&= {\color{blue}-2 \cdot cos(2\pi\frac{1}{4}n) -2j \cdot sin(2\pi\frac{1}{4}n)} + {\color{red}2j \cdot cos(2\pi\frac{1}{4}n) -2 \cdot sin(2\pi\frac{1}{4}n)}
In turn, :math:`X_3` becomes:
.. math::
X_3 \cdot e^{j2\pi\frac{3}{N}n} &= ({\color{blue}-2}{\color{red}-2j}) \cdot (cos(2\pi\frac{3}{4}n)+j\cdot sin(2\pi\frac{3}{4}n))
&= {\color{blue}-2 \cdot cos(2\pi\frac{3}{4}n) -2j \cdot sin(2\pi\frac{3}{4}n)} {\color{red}- 2j \cdot cos(2\pi\frac{3}{4}n) + 2 \cdot sin(2\pi\frac{3}{4}n)}
Notice that:
.. math::
\forall n:\, & cos(2\pi\frac{1}{4}n) = 0
& cos(2\pi\frac{3}{4}n) = 0
& sin(2\pi\frac{1}{4}n) = j
& sin(2\pi\frac{3}{4}n) = -j
In particular, see how the symmetry of the DFT leads to opposite values.
Plugin in these new values whenever :math:`j` shows up gives the following:
.. math::
X_1 \cdot e^{j2\pi\frac{1}{N}n} &= -2 \cdot cos(2\pi\frac{1}{4}n) + (-2j \cdot j) + (2j \cdot 0) -2 \cdot sin(2\pi\frac{1}{4}n)
&= -2 \cdot cos(2\pi\frac{1}{4}n) + 2 -2 \cdot sin(2\pi\frac{1}{4}n)
X_3 \cdot e^{j2\pi\frac{3}{N}n} &= -2 \cdot cos(2\pi\frac{3}{4}n) +(-2j \cdot -j) +(- 2j \cdot 0) + 2 \cdot sin(2\pi\frac{3}{4}n)
&= -2 \cdot cos(2\pi\frac{3}{4}n) - 2 + 2 \cdot sin(2\pi\frac{3}{4}n)
As these two terms get summed during the inverse DFT gives:
.. math::
X_1 \cdot e^{j2\pi\frac{1}{N}n} + X_3 \cdot e^{j2\pi\frac{3}{N}n} = -2 \cdot cos(2\pi\frac{1}{4}n) \cancel{+ 2} -2 \cdot sin(2\pi\frac{1}{4}n)\\
-2 \cdot cos(2\pi\frac{3}{4}n) \cancel{- 2} + 2 \cdot sin(2\pi\frac{3}{4}n)
An you are left with sum of real signals.