2023-11-01 18:28:25 +01:00
Discrete Fourier Transform
----------------------------
Discrete Fourier Transform (DFT) is used to perform the Fourier transform of a discrete signal.
2023-11-01 18:58:15 +01:00
The DFT of a discrete complex/real signal :math: `\vec{x}=\{x_0,...,x_{N-1}\}` is:
2023-11-01 18:28:25 +01:00
.. math ::
X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi\frac{k}{N}n}
.. note ::
In this case, :math: `\frac{k}{N}` can be seen as the frequency of the wave used to determined
the :math: `k^{th}` frequency :math: `X_k` .
See `here <https://www.youtube.com/watch?v=mkGsMWi_j4Q&t=282s> `__ for more infos.
2023-11-01 18:58:15 +01:00
One important property of the DFT is its **periodicity** . The DFT has a period of :math: `N` .
Hence, all :math: `X_k` such that :math: `k > \frac{N}{2}` corresponds to negative frequencies:
.. math ::
X_{N-1} &= \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi\frac{N-1}{N}n}
&= \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi (n - \frac{n}{N})}
&= \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi n} \cdot e^{j2\pi\frac{n}{N}}
&= \sum_{n=0}^{N-1} x_n \cdot e^{j2\pi\frac{n}{N}} \mathrm{~~as~~} \forall n: e^{-j2\pi n} = 1
&=X_{-1}
This explanation is extracted from `here <https://dsp.stackexchange.com/questions/50505/why-is-the-second-half-of-the-fft-negative-frequencies> `__ .
2023-11-02 07:19:24 +01:00
Note that, the frequency corresponding to :math: `\frac{N}{2}` is called `Nyquist_rate <https://en.wikipedia.org/wiki/Nyquist_rate> `__ .
As frequencies above :math: `\frac{N}{2}` cannot be captured by the signal due to the `Nyquist-Shannon <https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem> `__ , a reasoning phenomenon starts to arise.
This leads to a capturing effect of the negative frequencies.
See `here <https://www.youtube.com/watch?v=nOLuVNhBIg0> `__ for a visual explanation.
2023-11-01 18:58:15 +01:00
Inverse DFT
===========
2023-11-01 18:28:25 +01:00
The inverse DFT of a discrete complex/real signal :math: `\vec{x}={x_0,...,x_{N-1}}` is:
.. math ::
x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k \cdot e^{j2\pi\frac{k}{N}n}
.. note ::
If the signal is *real* , all the complex terms of the inverse DFT are suppose to cancel out.
In depth example
=================
2023-11-01 18:58:15 +01:00
Let's take a discrete signal :math: `\vec{x}=\{1,2,3,4\}` , sampled at a frequency :math: `f_s=10 Hz` .
2023-11-02 06:41:29 +01:00
.. literalinclude :: code/dft.R
2023-11-02 11:29:22 +01:00
:language: R
Now let's do its inverse DFT:
.. literalinclude :: code/idft.R
:language: R
Understanding how imaginary parts cancel out in during the inverse DFT is important.
The periodicity of the DFT plays a key role for that.
For our signal :math: `\vec{x}` we have:
.. math ::
\vec{X}=\{10+0j, -2+2j, -2+0j, -2-2j\}
See how :math: `X_1 = \overline{X_3}` . When computing :math: `x_n` , :math: `X_1` becomes:
.. math ::
X_1 \cdot e^{j2\pi\frac{1}{N}n} &= ({\color{blue}-2}+{\color{red}2j}) \cdot (cos(2\pi\frac{1}{4}n)+j\cdot sin(2\pi\frac{1}{4}n))
&= {\color{blue}-2 \cdot cos(2\pi\frac{1}{4}n) -2j \cdot sin(2\pi\frac{1}{4}n)} + {\color{red}2j \cdot cos(2\pi\frac{1}{4}n) -2 \cdot sin(2\pi\frac{1}{4}n)}
In turn, :math: `X_3` becomes:
.. math ::
X_3 \cdot e^{j2\pi\frac{3}{N}n} &= ({\color{blue}-2}{\color{red}-2j}) \cdot (cos(2\pi\frac{3}{4}n)+j\cdot sin(2\pi\frac{3}{4}n))
&= {\color{blue}-2 \cdot cos(2\pi\frac{3}{4}n) -2j \cdot sin(2\pi\frac{3}{4}n)} {\color{red}- 2j \cdot cos(2\pi\frac{3}{4}n) + 2 \cdot sin(2\pi\frac{3}{4}n)}
Notice that:
.. math ::
\forall n:\, & cos(2\pi\frac{1}{4}n) = 0
& cos(2\pi\frac{3}{4}n) = 0
& sin(2\pi\frac{1}{4}n) = j
& sin(2\pi\frac{3}{4}n) = -j
In particular, see how the symmetry of the DFT leads to opposite values.
Plugin in these new values whenever :math: `j` shows up gives the following:
.. math ::
X_1 \cdot e^{j2\pi\frac{1}{N}n} &= -2 \cdot cos(2\pi\frac{1}{4}n) + (-2j \cdot j) + (2j \cdot 0) -2 \cdot sin(2\pi\frac{1}{4}n)
&= -2 \cdot cos(2\pi\frac{1}{4}n) + 2 -2 \cdot sin(2\pi\frac{1}{4}n)
X_3 \cdot e^{j2\pi\frac{3}{N}n} &= -2 \cdot cos(2\pi\frac{3}{4}n) +(-2j \cdot -j) +(- 2j \cdot 0) + 2 \cdot sin(2\pi\frac{3}{4}n)
&= -2 \cdot cos(2\pi\frac{3}{4}n) - 2 + 2 \cdot sin(2\pi\frac{3}{4}n)
As these two terms get summed during the inverse DFT gives:
.. math ::
X_1 \cdot e^{j2\pi\frac{1}{N}n} + X_3 \cdot e^{j2\pi\frac{3}{N}n} = -2 \cdot cos(2\pi\frac{1}{4}n) \cancel{+ 2} -2 \cdot sin(2\pi\frac{1}{4}n)\\
-2 \cdot cos(2\pi\frac{3}{4}n) \cancel{- 2} + 2 \cdot sin(2\pi\frac{3}{4}n)
An you are left with sum of real signals.