2023-11-01 18:28:25 +01:00
Discrete Fourier Transform
----------------------------
Discrete Fourier Transform (DFT) is used to perform the Fourier transform of a discrete signal.
2023-11-01 18:58:15 +01:00
The DFT of a discrete complex/real signal :math: `\vec{x}=\{x_0,...,x_{N-1}\}` is:
2023-11-01 18:28:25 +01:00
.. math ::
X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi\frac{k}{N}n}
.. note ::
In this case, :math: `\frac{k}{N}` can be seen as the frequency of the wave used to determined
the :math: `k^{th}` frequency :math: `X_k` .
See `here <https://www.youtube.com/watch?v=mkGsMWi_j4Q&t=282s> `__ for more infos.
2023-11-01 18:58:15 +01:00
One important property of the DFT is its **periodicity** . The DFT has a period of :math: `N` .
Hence, all :math: `X_k` such that :math: `k > \frac{N}{2}` corresponds to negative frequencies:
.. math ::
X_{N-1} &= \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi\frac{N-1}{N}n}
&= \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi (n - \frac{n}{N})}
&= \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi n} \cdot e^{j2\pi\frac{n}{N}}
&= \sum_{n=0}^{N-1} x_n \cdot e^{j2\pi\frac{n}{N}} \mathrm{~~as~~} \forall n: e^{-j2\pi n} = 1
&=X_{-1}
This explanation is extracted from `here <https://dsp.stackexchange.com/questions/50505/why-is-the-second-half-of-the-fft-negative-frequencies> `__ .
2023-11-02 07:19:24 +01:00
Note that, the frequency corresponding to :math: `\frac{N}{2}` is called `Nyquist_rate <https://en.wikipedia.org/wiki/Nyquist_rate> `__ .
As frequencies above :math: `\frac{N}{2}` cannot be captured by the signal due to the `Nyquist-Shannon <https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem> `__ , a reasoning phenomenon starts to arise.
This leads to a capturing effect of the negative frequencies.
See `here <https://www.youtube.com/watch?v=nOLuVNhBIg0> `__ for a visual explanation.
2023-11-01 18:58:15 +01:00
Inverse DFT
===========
2023-11-01 18:28:25 +01:00
The inverse DFT of a discrete complex/real signal :math: `\vec{x}={x_0,...,x_{N-1}}` is:
.. math ::
x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k \cdot e^{j2\pi\frac{k}{N}n}
.. note ::
If the signal is *real* , all the complex terms of the inverse DFT are suppose to cancel out.
In depth example
=================
2023-11-01 18:58:15 +01:00
Let's take a discrete signal :math: `\vec{x}=\{1,2,3,4\}` , sampled at a frequency :math: `f_s=10 Hz` .
2023-11-02 06:41:29 +01:00
.. literalinclude :: code/dft.R