2023-10-15 15:21:14 +02:00
Notations
---------------
This page was inspired from the following `Wikipedia page <https://en.wikipedia.org/wiki/Notation_in_probability_and_statistics> `_ .
Sample and Population
=====================
A *population* is the entire population that you want to analyze. It is a exhaustive set. A *sample* is a subset of the population. It is a non-exhaustive set.
2023-10-15 15:58:41 +02:00
.. figure :: figures/population_sample.svg
:align: center
:width: 300px
2023-10-15 15:21:14 +02:00
2023-10-17 19:44:12 +02:00
*Inferential statistics* allows you draw conclusions (with a certain degree of confidence) on a population using samples.
2023-10-15 15:21:14 +02:00
2023-10-16 12:34:15 +02:00
A Tale of Schizophrenia
2023-10-15 15:21:14 +02:00
================================
Two different notation conventions are used. The one to use depends if you are working on a *population* or a *sample* :
.. list-table :: Notation
:align: center
2023-10-15 15:31:36 +02:00
:header-rows: 1
2023-10-15 15:21:14 +02:00
* - Metric
- Population
- Sample
2023-10-16 12:13:52 +02:00
- Notes
2023-10-15 15:21:14 +02:00
* - Sample mean
- :math: `\mu`
- :math: `\overline{x}`
2023-10-16 12:13:52 +02:00
-
2023-10-15 15:28:03 +02:00
* - Variance
- :math: `\sigma^2`
- :math: `s^2`
2023-10-16 12:13:52 +02:00
- :math: `s^2_n` without `Bessel's Correction <bessel_correction> `__
2023-10-15 15:28:03 +02:00
* - Standard deviation
- :math: `\sigma`
- :math: `s`
2023-10-16 12:13:52 +02:00
- :math: `s_n` without `Bessel's Correction <bessel_correction> `__
2023-10-15 15:28:03 +02:00
2023-10-15 18:58:41 +02:00
To determine the metric of a population (say :math: `\mu` ) using a sample, we use an estimator.
In the case of :math: `\mu` , we use :math: `\overline{x}` as an estimator.
.. note ::
Estimators can also be denoted with the hat symbol.
For example :math: `\hat{\mu}\equiv\overline{x}` .
2023-10-15 15:28:03 +02:00
Operators
==========
2023-10-15 16:41:28 +02:00
Expected value
^^^^^^^^^^^^^^^
2023-10-15 15:28:03 +02:00
2023-10-16 12:34:15 +02:00
The expected value (*espérance* ) of a random variable :math: `X` is noted :math: `\mathbb{E}[X]` .
It as the following linearity properties:
2023-10-15 15:21:14 +02:00
2023-10-15 16:41:28 +02:00
.. math ::
\mathbb{E}[X+Y]=\mathbb{E}[X] + \mathbb{E}[Y]
.. math ::
\mathbb{E}[\alpha X]=\alpha\mathbb{E}[X]
Variance
^^^^^^^^
The variance operator of a random variable :math: `X` is noted :math: `\mathbb{V}[X]` or :math: `\mathrm{Var}[X]` .
Coraviance
^^^^^^^^^^
The covariance operator of a random variable :math: `X` and :math: `Y`
is noted :math: `\mathrm{Cov}[X,Y]` .