Minor changes
This commit is contained in:
parent
1f702d7cf5
commit
ee62e13342
2 changed files with 45 additions and 1 deletions
|
@ -1,7 +1,47 @@
|
|||
.. _bessel_correction:
|
||||
|
||||
This page is inpired by `Wikipedia <https://en.wikipedia.org/wiki/Bessel%27s_correction>`__.
|
||||
|
||||
Bessel's Correction
|
||||
-----------------------
|
||||
|
||||
Bessel's correction is the use of :math:`n-1` instead of :math:`n` in the formula for the sample
|
||||
Bessel's correction is the use of :math:`n-1` instead of :math:`n` in the formulas for sample
|
||||
variance and sample standard deviation.
|
||||
In fact, using :math:`n` as a denominator leads to a biased estimator.
|
||||
This variance estimator is noted :math:`s^2_n`.
|
||||
Lets compute the discrepency between population variance and the biased sample variance:
|
||||
|
||||
.. math::
|
||||
\mathbb{E}[\sigma^2-s_n^2] &= \mathbb{E} \left[ \frac{1}{n} \sum_{i=1}^n(x_i - \mu)^2 - \frac{1}{n}\sum_{i=1}^n (x_i - \overline{x})^2 \right]
|
||||
|
||||
&=\mathbb{E}\left[ \frac{1}{n} \sum_{i=1}^n\left((x_i^2 - 2 x_i \mu + \mu^2) - (x_i^2 - 2 x_i \overline{x} + \overline{x}^2)\right) \right]
|
||||
|
||||
&=\mathbb{E}\left[ \frac{1}{n} \sum_{i=1}^n\left(\mu^2 - \overline{x}^2 + 2 x_i (\overline{x}-\mu) \right) \right]
|
||||
|
||||
&=\mathbb{E}\left[ \frac{1}{n} \sum_{i=1}^n \left(\mu^2 - \overline{x}^2 \right) + \frac{1}{n} \sum_{i=1}^n 2 x_i (\overline{x} - \mu) \right]
|
||||
|
||||
&=\mathbb{E}\left[ \mu^2 - \overline{x}^2 + \frac{1}{n} \sum_{i=1}^n 2 x_i (\overline{x} - \mu) \right]
|
||||
|
||||
&=\mathbb{E}\left[ \mu^2 - \overline{x}^2 + 2\overline{x}(\overline{x} - \mu) \right]
|
||||
|
||||
&=\mathbb{E}\left[ \mu^2 - 2 \overline{x} \mu + \overline{x}^2 \right]
|
||||
|
||||
&= \mathbb{E}\left[ (\overline{x} - \mu)^2 \right]
|
||||
|
||||
&= \mathrm{Var}[\overline{x}]
|
||||
|
||||
&= \frac{\sigma^2}{n}
|
||||
|
||||
|
||||
This result shows us that the discrepency between the population and sample variance is :math:`\frac{\sigma^2}{n}`.
|
||||
From this result we can deduce how :math:`S_n^2` must be adjusted:
|
||||
|
||||
.. math::
|
||||
\mathbb{E} \left[ s^2_n \right] = \sigma^2 - \frac{\sigma^2}{n} = \frac{n-1}{n} \sigma^2
|
||||
|
||||
Thus, the adjustment factor is :math:`\frac{n-1}{n}`. As such, an unbiased estimator of :math:`\sigma^2` is:
|
||||
|
||||
.. math::
|
||||
s^2 = \frac{s^2_n}{\frac{n-1}{n}} = \frac{n}{n-1} s_n^2 &= \frac{n}{n-1} \frac{1}{n} \sum_{i=1}^n (x_i-\overline{x})^2
|
||||
|
||||
&= \frac{1}{n-1} \sum_{i=1}^n (x_i-\overline{x})^2
|
||||
|
|
|
@ -26,15 +26,19 @@ Two different notation conventions are used. The one to use depends if you are w
|
|||
* - Metric
|
||||
- Population
|
||||
- Sample
|
||||
- Notes
|
||||
* - Sample mean
|
||||
- :math:`\mu`
|
||||
- :math:`\overline{x}`
|
||||
-
|
||||
* - Variance
|
||||
- :math:`\sigma^2`
|
||||
- :math:`s^2`
|
||||
- :math:`s^2_n` without `Bessel's Correction <bessel_correction>`__
|
||||
* - Standard deviation
|
||||
- :math:`\sigma`
|
||||
- :math:`s`
|
||||
- :math:`s_n` without `Bessel's Correction <bessel_correction>`__
|
||||
|
||||
To determine the metric of a population (say :math:`\mu`) using a sample, we use an estimator.
|
||||
In the case of :math:`\mu`, we use :math:`\overline{x}` as an estimator.
|
||||
|
|
Loading…
Add table
Reference in a new issue