mirror of
https://gitlab.com/manzerbredes/paper-lowrate-iot.git
synced 2025-04-19 04:09:43 +00:00
607 lines
25 KiB
Org Mode
607 lines
25 KiB
Org Mode
#+TITLE: Estimating the end-to-end energy consumption of IoT devices along with their impact on Cloud and telecommunication infrastructures
|
|
|
|
#+EXPORT_EXCLUDE_TAGS: noexport
|
|
#+STARTUP: hideblocks
|
|
#+PROPERTY: header-args :eval no
|
|
#+OPTIONS: H:5 author:nil email:nil creator:nil timestamp:nil skip:nil toc:nil ^:nil
|
|
#+LATEX_CLASS: IEEEtran
|
|
#+LATEX_HEADER: \usepackage{hyperref}
|
|
#+LATEX_HEADER: \usepackage{booktabs}
|
|
#+LATEX_HEADER: \IEEEoverridecommandlockouts
|
|
#+LATEX_HEADER: \author{\IEEEauthorblockN{1\textsuperscript{st} Anne-Cécile Orgerie}
|
|
#+LATEX_HEADER: \IEEEauthorblockA{\textit{Univ Rennes, Inria, CNRS, IRISA, Rennes, France} \\
|
|
#+LATEX_HEADER: Rennes, France \\
|
|
#+LATEX_HEADER: anne-cecile.orgerie@irisa.fr}
|
|
#+LATEX_HEADER: \and
|
|
#+LATEX_HEADER: \IEEEauthorblockN{2\textsuperscript{nd} Loic Guegan}
|
|
#+LATEX_HEADER: \IEEEauthorblockA{\textit{Univ Rennes, Inria, CNRS, IRISA, Rennes, France} \\
|
|
#+LATEX_HEADER: Rennes, France \\
|
|
#+LATEX_HEADER: loic.guegan@irisa.fr}
|
|
#+LATEX_HEADER: }
|
|
|
|
|
|
|
|
#+BEGIN_EXPORT latex
|
|
\begin{abstract}
|
|
Information and Communication Technology takes a growing part in the worldwide energy consumption. One of the root causes of this increase lies in the multiplication of connected devices. Each object of the Internet-of-Things often does not consume much energy by itself. Yet, their number and the infrastructures they require to properly work have leverage. In this paper, we combine simulations and real measurements to study the energy impact of IoT devices. In particular, we analyze the energy consumption of Cloud and telecommunication infrastructures induced by the utilization of connected devices, and we propose an end-to-end energy consumption model for these devices.
|
|
\end{abstract}
|
|
|
|
\begin{IEEEkeywords}
|
|
component, formatting, style, styling, insert
|
|
\end{IEEEkeywords}
|
|
#+END_EXPORT
|
|
|
|
|
|
* Introduction [2 col]
|
|
* Related Work [1 col]
|
|
* Use-Case [1 col]
|
|
** Application Characteristic
|
|
|
|
#+BEGIN_COMMENT
|
|
The IoT part is composed of an Access Point (AP), connected to several sensors using WIFI. In the
|
|
system, the IoT part is considered as the part where the system data are created. In fact, the
|
|
data life cycle start when the sensors records their respective local temperature at a frequency
|
|
$f$ and the local timestamp. Then, these data are transmitted through the network along with an
|
|
arbitrary sensor id of 128 bits. Finally, the AP is in charge to transmit the data to the cloud
|
|
using the network part.
|
|
|
|
The network part is considered as the medium that link the IoT part to the cloud. It is composed
|
|
of several network switches and router and it is considered to be a wired network.
|
|
|
|
#+END_COMMENT
|
|
|
|
|
|
** Cloud Infrastructure
|
|
|
|
* System Model [2 col]
|
|
|
|
The system model is divided in two parts. First, the IoT and the Network part are models through
|
|
simulations. Then, the Cloud part is model using real servers connected to watt-meters. In this way,
|
|
it is possible to evaluate the end-to-end energy consumption of the system.
|
|
|
|
** IoT Part
|
|
In the first place, the IoT part is composed of several sensors connected to an AP which forms a
|
|
cell. It is model using the ns-3 network simulator. Thus, we setup between 5 and 15 sensors
|
|
connected to the AP using WIFI 5GHz 802.11n. The node are placed randomly in a rectangle of 400m2
|
|
around the AP which correspond to a typical real use case. All the nodes of the cell are setup
|
|
with the default WIFI energy model provided by ns-3. The different energy values used by the
|
|
energy model are provided on Table \ref{tab:wifi-energy}. These energy were extracted from
|
|
previous work\cite{halperin_demystifying_nodate,li_end--end_2018} on 802.11n. Note that we
|
|
suppose that the energy source of the cell nodes are unlimited and thus every nodes can
|
|
communicate until the end of all the simulations.
|
|
|
|
As a scenario, sensors send to the AP packets of 192 bits that include: \textbf{1)} A 128 bits
|
|
sensors id \textbf{2)} A 32 bits integer representing the temperature \textbf{3)} An integer
|
|
timestamp representing the temperature sensing time. The data are transmitted immediately at each
|
|
sensing interval $I$ varied from 1s to 60s. Finally, the AP is in charge of relaying data to the
|
|
cloud using the network part.
|
|
|
|
#+BEGIN_EXPORT latex
|
|
\begin{table}[]
|
|
\centering
|
|
\caption{Wifi Energy Values}
|
|
\label{tab:wifi-energy}
|
|
\begin{tabular}{@{}lr@{}}
|
|
Parameter & Value \\ \midrule
|
|
Supply Voltage & 3.3V \\
|
|
Tx & 0.38A \\
|
|
Rx & 0.313A \\
|
|
Idle & 0.273A \\ \bottomrule
|
|
\end{tabular}
|
|
\end{table}
|
|
#+END_EXPORT
|
|
|
|
** Network Part
|
|
The network part represents the network starting from the AP to the Cloud excluding the server.
|
|
It is also model into ns-3. We consider the server to be 9 hops aways from the AP with a typical
|
|
round-trip latency of 100ms from the AP to the server. Each node from the AP to the Cloud is
|
|
assume to be network switches with static and dynamic network energy consumption. ECOFEN
|
|
\cite{orgerie_ecofen:_2011} is used to model the energy consumption of the network part. ECOFEN
|
|
is a ns-3 network energy module for ns-3 dedicated to wired network energy estimation. It is
|
|
based on an energy-per-bit model including static consumption by assuming a linear relation
|
|
between the amount of data sent to the network interface and the power consumption. The different
|
|
energy values used to instanciate the ECOFEN energy model for the network part are shown in Table
|
|
\ref{tab:net-energy} and come from previous work \cite{cornea_studying_2014-1}.
|
|
|
|
#+BEGIN_EXPORT latex
|
|
\begin{table}[]
|
|
\centering
|
|
\caption{Network Part Energy Settings}
|
|
\label{tab:net-energy}
|
|
\begin{tabular}{@{}lr@{}}
|
|
Parameter & Value \\ \midrule
|
|
Idle & 1J \\
|
|
Bytes (Tx/Rx) & 3.4nJ \\
|
|
Pkt (Tx/Rx) & 192.0nJ \\ \bottomrule
|
|
\end{tabular}
|
|
\end{table}
|
|
#+END_EXPORT
|
|
|
|
** Cloud Part
|
|
Finally, to measure the energy consumption of the server, we used real server from the
|
|
large-scale test-beds Grid5000 (G5K). In fact, G5K has a cluster called Nova composed of several
|
|
nodes which are connected to watt-meters. In this way, we can benefit from real energy
|
|
measurements. The server used in the experiment is composed of Intel Xeon E5-2620 processor with
|
|
64 GB of RAM and 600GB of disk space on a Linux based distribution. This server is configured to
|
|
use KVM as virtualization mechanism. We deploy a classical Linux x86_64 disctribution on the
|
|
Virtual Machines (VM) along with a MySQL database. We different amount of allocated memory for
|
|
the VM namely 1024MB/2048MB/4096MB to highlight its effects on the server energy consumption.
|
|
|
|
The sensors requests are simulated using another server. This server is in charge to send hundred
|
|
of requests to the VM in order to fill the database. Consequently, it is easy to vary the
|
|
different requests characteristics namely: \textbf{1)} The number request, to virtually
|
|
add/remove sensors \textbf{2)} The requests frequency.
|
|
|
|
* Evaluation [3 col]
|
|
** IoT/Network Consumption
|
|
** Cloud Energy Consumption
|
|
** Virtual Machine Size Impact
|
|
** Application Accuracy
|
|
Refresh frequency etc...
|
|
** End-To-End Consumption
|
|
* Discussion [1 col]
|
|
* Conclusion [1 col]
|
|
* References [1 col]
|
|
\bibliographystyle{IEEEtran}
|
|
\bibliography{references}
|
|
|
|
|
|
* Data Provenance :noexport:
|
|
|
|
** Data Analysis
|
|
*** NS3
|
|
To Generate all the plots, please execute the following line:
|
|
#+NAME: runAnalysis
|
|
#+CALL: plotToPDF(plots=genAllPlots(data=NS3-logToCSV()))
|
|
|
|
#+RESULTS: runAnalysis
|
|
|
|
**** R Scripts
|
|
***** Generate all plots script
|
|
Available variables:
|
|
|---------------------|
|
|
| Name |
|
|
|---------------------|
|
|
| sensorsSendInterval |
|
|
| sensorsPktSize |
|
|
| sensorsNumber |
|
|
| nbHop |
|
|
| linksBandwidth |
|
|
| linksLatency |
|
|
| totalEnergy |
|
|
| nbPacketCloud |
|
|
| nbNodes |
|
|
| avgDelay |
|
|
| simKey |
|
|
|---------------------|
|
|
|
|
#+NAME: genAllPlots
|
|
#+BEGIN_SRC R :noweb yes :results output
|
|
<<NS3-RUtils>>
|
|
data=read_csv("logs/ns3/last/data.csv")
|
|
# easyPlotGroup("linksLatency","totalEnergy", "LATENCY","sensorsNumber")
|
|
# easyPlotGroup("linksBandwidth","totalEnergy", "BW","sensorsNumber")
|
|
easyPlot("sensorsNumber","totalEnergy", "NBSENSORS")
|
|
easyPlotGroup("positionSeed", "totalEnergy","SENSORSPOS","sensorsNumber")
|
|
easyPlotGroup("positionSeed", "avgDelay","SENSORSPOS","sensorsNumber")
|
|
easyPlotGroup("sensorsSendInterval","sensorsEnergy","SENDINTERVAL","sensorsNumber")
|
|
easyPlotGroup("sensorsSendInterval","networkEnergy","SENDINTERVAL","sensorsNumber")
|
|
|
|
#+END_SRC
|
|
|
|
#+RESULTS: genAllPlots
|
|
|
|
***** R Utils
|
|
RUtils is intended to load logs (data.csv) and providing
|
|
simple plot function for them.
|
|
|
|
#+NAME: NS3-RUtils
|
|
#+BEGIN_SRC R :eval never
|
|
library("tidyverse")
|
|
|
|
# Fell free to update the following
|
|
labels=c(nbNodes="Number of nodes",sensorsNumber="Number of sensors",totalEnergy="Total Energy (J)",
|
|
nbHop="Number of hop (AP to Cloud)", linksBandwidth="Links Bandwidth (Mbps)", avgDelay="Average Application Delay (s)",
|
|
linksLatency="Links Latency (ms)", sensorsSendInterval="Sensors Send Interval (s)", positionSeed="Position Seed",
|
|
sensorsEnergy="Sensors Wifi Energy Consumption (J)", networkEnergy="Network Energy Consumption (J)")
|
|
|
|
# Get label according to varName
|
|
getLabel=function(varName){
|
|
if(is.na(labels[varName])){
|
|
return(varName)
|
|
}
|
|
return(labels[varName])
|
|
}
|
|
|
|
easyPlot=function(X,Y,KEY){
|
|
curData=data%>%filter(simKey==KEY)
|
|
stopifnot(NROW(curData)>0)
|
|
ggplot(curData,aes_string(x=X,y=Y))+geom_point()+geom_line()+xlab(getLabel(X))+ylab(getLabel(Y))
|
|
ggsave(paste0("plots/",KEY,"-",X,"_",Y,".png"))
|
|
}
|
|
|
|
easyPlotGroup=function(X,Y,KEY,GRP){
|
|
curData=data%>%filter(simKey==KEY) %>% mutate(!!GRP:=as.character(UQ(rlang::sym(GRP)))) # %>%mutate(sensorsNumber=as.character(sensorsNumber))
|
|
stopifnot(NROW(curData)>0)
|
|
ggplot(curData,aes_string(x=X,y=Y,color=GRP,group=GRP))+geom_point()+geom_line()+xlab(getLabel(X))+ylab(getLabel(Y)) + labs(color = getLabel(GRP))
|
|
ggsave(paste0("plots/",KEY,"-",X,"_",Y,".png"))
|
|
}
|
|
#+END_SRC
|
|
|
|
**** Plots -> PDF
|
|
Merge all plots in plots/ folder into a pdf file.
|
|
#+NAME: plotToPDF
|
|
#+BEGIN_SRC bash :results output :noweb yes
|
|
orgFile="plots/plots.org"
|
|
<<singleRun>> # To get all default arguments
|
|
|
|
# Write helper function
|
|
function write {
|
|
echo "$1" >> $orgFile
|
|
}
|
|
|
|
echo "#+TITLE: Analysis" > $orgFile
|
|
write "#+LATEX_HEADER: \usepackage{fullpage}"
|
|
write "#+OPTIONS: toc:nil"
|
|
# Default arguments
|
|
write '\begin{center}'
|
|
write '\begin{tabular}{lr}'
|
|
write 'Parameters & Values\\'
|
|
write '\hline'
|
|
write "sensorsPktSize & ${sensorsPktSize} bytes\\\\"
|
|
write "sensorsSendInterval & ${sensorsSendInterval}s\\\\"
|
|
write "sensorsNumber & ${sensorsNumber}\\\\"
|
|
write "nbHop & ${nbHop}\\\\"
|
|
write "linksBandwidth & ${linksBandwidth}Mbps\\\\"
|
|
write "linksLatency & ${linksLatency}ms\\\\"
|
|
write '\end{tabular}'
|
|
write '\newline'
|
|
write '\end{center}'
|
|
|
|
for plot in $(find plots/ -type f -name "*.png")
|
|
do
|
|
write "\includegraphics[width=0.5\linewidth]{$(basename ${plot})}"
|
|
done
|
|
|
|
# Export to pdf
|
|
emacs $orgFile --batch -f org-latex-export-to-pdf --kill
|
|
#+END_SRC
|
|
|
|
#+RESULTS:
|
|
|
|
**** Log -> CSV
|
|
logToCSV extract usefull data from logs and put them into logs/data.csv.
|
|
|
|
#+NAME: NS3-logToCSV
|
|
#+BEGIN_SRC bash :results none
|
|
csvOutput="logs/data.csv"
|
|
|
|
# First save csv header line
|
|
aLog=$(find logs/ -type f -name "*.org"|head -n 1)
|
|
metrics=$(cat $aLog|grep "\-METRICSLINE\-"|sed "s/-METRICSLINE-//g")
|
|
echo $metrics | awk '{for(i=1;i<=NF;i++){split($i,elem,":");printf(elem[1]);if(i<NF)printf(",");else{print("")}}}' > $csvOutput
|
|
|
|
# Second save all values
|
|
for logFile in $(find logs/ -type f -name "*.org")
|
|
do
|
|
metrics=$(cat $logFile|grep "\-METRICSLINE\-"|sed "s/-METRICSLINE-//g")
|
|
echo $metrics | awk '{for(i=1;i<=NF;i++){split($i,elem,":");printf(elem[2]);if(i<NF)printf(",");else{print("")}}}' >> $csvOutput
|
|
done
|
|
#+END_SRC
|
|
|
|
|
|
|
|
|
|
|
|
|
|
**** Custom Plots
|
|
|
|
#+NAME: ssiNet
|
|
#+BEGIN_SRC R :noweb yes :results graphics :file plots/sensorsSendInterval-net.png
|
|
<<NS3-RUtils>>
|
|
# Load Data
|
|
data=read_csv("logs/ns3/last/data.csv")
|
|
|
|
data%>%filter(simKey=="SENDINTERVAL",sensorsNumber==20) %>% ggplot(aes(x=sensorsSendInterval,y=networkEnergy))+xlab(getLabel("sensorsSendInterval"))+ylab(getLabel("networkEnergy"))+
|
|
geom_line()+labs(title="For 20 sensors")
|
|
ggsave("plots/sensorsSendInterval-net.png",dpi=80)
|
|
#+END_SRC
|
|
|
|
|
|
#+NAME: ssiWifi
|
|
#+BEGIN_SRC R :noweb yes :results graphics :file plots/sensorsSendInterval-wifi.png
|
|
<<NS3-RUtils>>
|
|
data=read_csv("logs/ns3/last/data.csv")
|
|
data%>%filter(simKey=="SENDINTERVAL",sensorsNumber==20) %>% ggplot(aes(x=sensorsSendInterval,y=sensorsEnergy))+xlab(getLabel("sensorsSendInterval"))+ylab(getLabel("sensorsEnergy"))+
|
|
geom_line() + geom_line()+labs(title="For 20 sensors")
|
|
ggsave("plots/sensorsSendInterval-wifi.png",dpi=80)
|
|
#+END_SRC
|
|
|
|
|
|
#+BEGIN_SRC R :results graphics :noweb yes :file plot-final.png :session *R*
|
|
<<NS3-RUtils>>
|
|
simTime=1800
|
|
|
|
# Network
|
|
data=read_csv("logs/ns3/last/data.csv")
|
|
data=data%>%filter(simKey=="NBSENSORS")
|
|
dataC5=data%>%filter(sensorsNumber==5)%>% mutate(energy=networkEnergy/simTime) %>%select(energy,sensorsNumber)
|
|
dataC10=data%>%filter(sensorsNumber==10)%>%mutate(energy=networkEnergy/simTime) %>%select(energy,sensorsNumber)
|
|
dataNet=rbind(dataC5,dataC10)%>%mutate(type="Network")
|
|
|
|
# Network
|
|
dataS5=data%>%filter(sensorsNumber==5)%>% mutate(energy=sensorsEnergy/simTime) %>%select(energy,sensorsNumber)
|
|
dataS10=data%>%filter(sensorsNumber==10)%>%mutate(energy=sensorsEnergy/simTime) %>%select(energy,sensorsNumber)
|
|
dataS=rbind(dataS5,dataS10)%>%mutate(type="Sensors")
|
|
|
|
data=rbind(dataNet,dataS)%>%mutate(sensorsNumber=as.character(sensorsNumber))
|
|
|
|
ggplot(data)+geom_bar(aes(x=sensorsNumber,y=energy,fill=type),stat="identity")+xlab("Sensors Number")+ylab("Power Consumption (W)")+guides(fill=guide_legend(title="Part"))
|
|
ggsave("plot-final.png",dpi=80)
|
|
|
|
#+END_SRC
|
|
|
|
|
|
*** Cloud
|
|
**** R Scripts
|
|
***** Plots script
|
|
#+BEGIN_SRC R :results output :noweb yes :file second-final/plot.png
|
|
<<RUtils>>
|
|
dataOrig=loadData("./second-final/data.csv")
|
|
|
|
data=dataOrig%>%filter(simKey=="nbSensors")%>%filter(state=="sim",nbSensors==100)
|
|
dataIDLE=dataOrig%>%filter(simKey=="nbSensors")%>%filter(state!="sim",nbSensors==100)
|
|
data=data%>%mutate(meanEnergy=mean(energy))
|
|
dataIDLE=dataIDLE%>%mutate(meanEnergy=mean(energy))
|
|
data=rbind(data,dataIDLE)
|
|
ggplot(data,aes(x=time,y=energy))+geom_point(position="jitter")+xlab(getLabel("time"))+expand_limits(y=0)+facet_wrap(~state)+geom_hline(aes(color=state,yintercept=mean(meanEnergy)))
|
|
ggsave("./second-final/plot.png",dpi=180)
|
|
#+END_SRC
|
|
|
|
#+RESULTS:
|
|
#+begin_example
|
|
# A tibble: 3,050 x 8
|
|
ts energy simKey vmSize nbSensors time state meanEnergy
|
|
<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
|
|
1 1558429001. 90.2 nbSensors 2048 100 0 IDLE 90.8
|
|
2 1558429001. 89 nbSensors 2048 100 0.0199 IDLE 90.8
|
|
3 1558429001. 89 nbSensors 2048 100 0.0399 IDLE 90.8
|
|
4 1558429001. 90.8 nbSensors 2048 100 0.0599 IDLE 90.8
|
|
5 1558429001. 91 nbSensors 2048 100 0.0799 IDLE 90.8
|
|
6 1558429001. 90.5 nbSensors 2048 100 0.1000 IDLE 90.8
|
|
7 1558429001. 89.9 nbSensors 2048 100 0.120 IDLE 90.8
|
|
8 1558429001. 88.6 nbSensors 2048 100 0.140 IDLE 90.8
|
|
9 1558429001. 88.6 nbSensors 2048 100 0.160 IDLE 90.8
|
|
10 1558429001. 90.5 nbSensors 2048 100 0.180 IDLE 90.8
|
|
# … with 3,040 more rows
|
|
#+end_example
|
|
|
|
|
|
|
|
****** Custom Plots
|
|
|
|
#+NAME: ssiNet
|
|
#+BEGIN_SRC R :noweb yes :results graphics :file plots/sensorsSendInterval-net.png
|
|
<<RUtils>>
|
|
|
|
data%>%filter(simKey=="SENDINTERVAL",sensorsNumber==20) %>% ggplot(aes(x=sensorsSendInterval,y=networkEnergy))+xlab(getLabel("sensorsSendInterval"))+ylab(getLabel("networkEnergy"))+
|
|
geom_line()+labs(title="For 20 sensors")
|
|
ggsave("plots/sensorsSendInterval-net.png",dpi=80)
|
|
#+END_SRC
|
|
|
|
#+RESULTS:
|
|
[[file:plots/sensorsSendInterval-net.png]]
|
|
|
|
|
|
#+NAME: ssiWifi
|
|
#+BEGIN_SRC R :noweb yes :results graphics :file plots/sensorsSendInterval-wifi.png
|
|
<<RUtils>>
|
|
data%>%filter(simKey=="SENDINTERVAL",sensorsNumber==20) %>% ggplot(aes(x=sensorsSendInterval,y=sensorsEnergy))+xlab(getLabel("sensorsSendInterval"))+ylab(getLabel("sensorsEnergy"))+
|
|
geom_line() + geom_line()+labs(title="For 20 sensors")
|
|
ggsave("plots/sensorsSendInterval-wifi.png",dpi=80)
|
|
#+END_SRC
|
|
|
|
#+RESULTS: ssiWifi
|
|
[[file:plots/sensorsSendInterval-wifi.png]]
|
|
|
|
#+RESULTS:
|
|
[[file:plots/sensorsSendInterval.png]]
|
|
|
|
|
|
***** R Utils
|
|
RUtils is intended to load logs (data.csv) and providing
|
|
simple plot function for them.
|
|
|
|
#+NAME: G5K-RUtils
|
|
#+BEGIN_SRC R :eval never
|
|
library("tidyverse")
|
|
|
|
# Fell free to update the following
|
|
labels=c(time="Time (s)")
|
|
|
|
loadData=function(path){
|
|
data=read_csv(path)
|
|
}
|
|
|
|
# Get label according to varName
|
|
getLabel=function(varName){
|
|
if(is.na(labels[varName])){
|
|
return(varName)
|
|
}
|
|
return(labels[varName])
|
|
}
|
|
#+END_SRC
|
|
|
|
**** Plots -> PDF
|
|
Merge all plots in plots/ folder into a pdf file.
|
|
#+NAME: plotToPDF
|
|
#+BEGIN_SRC bash :results output :noweb yes
|
|
orgFile="plots/plots.org"
|
|
<<singleRun>> # To get all default arguments
|
|
|
|
# Write helper function
|
|
function write {
|
|
echo "$1" >> $orgFile
|
|
}
|
|
|
|
echo "#+TITLE: Analysis" > $orgFile
|
|
write "#+LATEX_HEADER: \usepackage{fullpage}"
|
|
write "#+OPTIONS: toc:nil"
|
|
# Default arguments
|
|
write '\begin{center}'
|
|
write '\begin{tabular}{lr}'
|
|
write 'Parameters & Values\\'
|
|
write '\hline'
|
|
write "sensorsPktSize & ${sensorsPktSize} bytes\\\\"
|
|
write "sensorsSendInterval & ${sensorsSendInterval}s\\\\"
|
|
write "sensorsNumber & ${sensorsNumber}\\\\"
|
|
write "nbHop & ${nbHop}\\\\"
|
|
write "linksBandwidth & ${linksBandwidth}Mbps\\\\"
|
|
write "linksLatency & ${linksLatency}ms\\\\"
|
|
write '\end{tabular}'
|
|
write '\newline'
|
|
write '\end{center}'
|
|
|
|
for plot in $(find plots/ -type f -name "*.png")
|
|
do
|
|
write "\includegraphics[width=0.5\linewidth]{$(basename ${plot})}"
|
|
done
|
|
|
|
# Export to pdf
|
|
emacs $orgFile --batch -f org-latex-export-to-pdf --kill
|
|
#+END_SRC
|
|
|
|
**** CSVs -> CSV
|
|
Merge all energy file into one (and add additional fields).
|
|
|
|
#+NAME: G5K-mergeCSV
|
|
#+BEGIN_SRC sh
|
|
#!/bin/bash
|
|
|
|
whichLog="second-final"
|
|
|
|
|
|
logFile="$(dirname $(readlink -f $0))"/$whichLog/simLogs.txt
|
|
dataFile=$(dirname "$logFile")/data.csv
|
|
|
|
|
|
getValue () {
|
|
line=$(echo "$1" | grep "Simulation para"|sed "s/Simulation parameters: //g")
|
|
key=$2
|
|
echo "$line"|awk 'BEGIN{RS=" ";FS=":"}"'$key'"==$1{gsub("\n","",$0);print $2}'
|
|
}
|
|
|
|
##### Add extract info to energy #####
|
|
IFS=$'\n'
|
|
for cmd in $(cat $logFile|grep "Simulation parameters")
|
|
do
|
|
nodeName=$(getValue $cmd serverNodeName)
|
|
from=$(getValue $cmd simStart)
|
|
to=$(getValue $cmd simEnd)
|
|
vmSize=$(getValue $cmd vmSize)
|
|
nbSensors=$(getValue $cmd nbSensors)
|
|
simKey=$(getValue $cmd simKey)
|
|
csvFile="$whichLog/${simKey}_${vmSize}VMSIZE_${nbSensors}NBSENSORS_${from}${to}.csv"
|
|
csvFileIDLE="$whichLog/${simKey}_${vmSize}VMSIZE_${nbSensors}NBSENSORS_${from}${to}_IDLE.csv"
|
|
tmpFile=${csvFile}_tmp
|
|
echo ts,energy,simKey,vmSize,nbSensors,time,state > $tmpFile
|
|
minTs=$(tail -n+2 $csvFile|awk -F"," 'BEGIN{min=0}$1<min||min==0{min=$1}END{print(min)}') # To compute ts field
|
|
minTsIDLE=$(tail -n+2 $csvFileIDLE|awk -F"," 'BEGIN{min=0}$1<min||min==0{min=$1}END{print(min)}') # To compute ts field
|
|
tail -n+2 ${csvFile} | awk -F"," '{print $0",'$simKey','$vmSize','$nbSensors',"$1-'$minTs'",sim"}' >> $tmpFile
|
|
tail -n+2 ${csvFileIDLE} | awk -F"," '{print $0",'$simKey','$vmSize','$nbSensors',"$1-'$minTsIDLE'",IDLE"}' >> $tmpFile
|
|
done
|
|
|
|
|
|
##### Fill dataFile #####
|
|
echo ts,energy,simKey,vmSize,nbSensors,time,state > $dataFile
|
|
for tmpFile in $(find ${whichLog}/*_tmp -type f)
|
|
do
|
|
tail -n+2 $tmpFile >> $dataFile
|
|
rm $tmpFile # Pay attention to this line :D
|
|
done
|
|
#+END_SRC
|
|
|
|
#+RESULTS: mergeCSV
|
|
*** Final Plots
|
|
|
|
|
|
#+BEGIN_SRC R :noweb yes :results graphics :file plots/final.png :session *R*
|
|
library("tidyverse")
|
|
|
|
# Load data
|
|
data=read_csv("./logs/g5k/second-final/data.csv")
|
|
data=data%>%filter(state=="sim",simKey=="nbSensors")
|
|
|
|
# Cloud
|
|
data10=data%>%filter(nbSensors==20)%>%mutate(energy=mean(energy)) %>% slice(1L)
|
|
data100=data%>%filter(nbSensors==100)%>%mutate(energy=mean(energy)) %>% slice(1L)
|
|
data300=data%>%filter(nbSensors==300)%>%mutate(energy=mean(energy)) %>% slice(1L)
|
|
dataCloud=rbind(data10,data100,data300)%>%mutate(sensorsNumber=nbSensors)%>%mutate(type="Cloud")%>%select(sensorsNumber,energy,type)
|
|
|
|
|
|
|
|
approx=function(data1, data2,nbSensors){
|
|
x1=data1$sensorsNumber
|
|
y1=data1$energy
|
|
|
|
x2=data2$sensorsNumber
|
|
y2=data2$energy
|
|
|
|
a=((y2-y1)/(x2-x1))
|
|
b=y1-a*x1
|
|
|
|
return(a*nbSensors+b)
|
|
|
|
}
|
|
|
|
|
|
simTime=1800
|
|
|
|
# Network
|
|
data=read_csv("./logs/ns3/last/data.csv")
|
|
data=data%>%filter(simKey=="NBSENSORS")
|
|
dataC5=data%>%filter(sensorsNumber==5)%>% mutate(energy=networkEnergy/simTime) %>%select(energy,sensorsNumber)
|
|
dataC10=data%>%filter(sensorsNumber==10)%>%mutate(energy=networkEnergy/simTime) %>%select(energy,sensorsNumber)
|
|
dataNet=rbind(dataC5,dataC10)%>%mutate(type="Network")
|
|
|
|
# Sensors
|
|
dataS5=data%>%filter(sensorsNumber==5)%>% mutate(energy=sensorsEnergy/simTime) %>%select(energy,sensorsNumber)
|
|
dataS10=data%>%filter(sensorsNumber==10)%>%mutate(energy=sensorsEnergy/simTime) %>%select(energy,sensorsNumber)
|
|
dataS=rbind(dataS5,dataS10)%>%mutate(type="Sensors")
|
|
|
|
fakeNetS=tibble(
|
|
sensorsNumber=c(20,100,300,20,100,300),
|
|
energy=c(dataC10$energy,approx(dataC5,dataC10,100),approx(dataC5,dataC10,300),dataS10$energy,approx(dataS5,dataS10,100),approx(dataS5,dataS10,300)),
|
|
type=c("Network","Network","Network","Sensors","Sensors","Sensors")
|
|
)
|
|
|
|
fakeNetS=fakeNetS%>%mutate(sensorsNumber=as.character(sensorsNumber))
|
|
dataCloud=dataCloud%>%mutate(sensorsNumber=as.character(sensorsNumber))
|
|
|
|
data=rbind(fakeNetS,dataCloud)%>%mutate(sensorsNumber=as.character(sensorsNumber))
|
|
|
|
|
|
data=data%>%mutate(sensorsNumber=fct_reorder(sensorsNumber,as.numeric(sensorsNumber)))
|
|
|
|
ggplot(data)+geom_bar(position="dodge2",colour="black",aes(x=sensorsNumber,y=energy,fill=type),stat="identity")+
|
|
xlab("Sensors Number")+ylab("Power Consumption (W)")+guides(fill=guide_legend(title="Part"))
|
|
ggsave("plots/final.png",dpi=80)
|
|
|
|
#+END_SRC
|
|
|
|
#+RESULTS:
|
|
[[file:plots/final.png]]
|
|
|
|
|
|
|
|
|
|
|
|
* Emacs settings :noexport:
|
|
# Local Variables:
|
|
# eval: (unless (boundp 'org-latex-classes) (setq org-latex-classes nil))
|
|
# eval: (add-to-list 'org-latex-classes
|
|
# '("IEEEtran" "\\documentclass[conference]{IEEEtran}\n \[NO-DEFAULT-PACKAGES]\n \[EXTRA]\n" ("\\section{%s}" . "\\section*{%s}") ("\\subsection{%s}" . "\\subsection*{%s}") ("\\subsubsection{%s}" . "\\subsubsection*{%s}") ("\\paragraph{%s}" . "\\paragraph*{%s}") ("\\subparagraph{%s}" . "\\subparagraph*{%s}")))
|
|
# End:
|
|
|
|
|
|
|