paper-lowrate-iot/2019-Mascots.org

880 lines
37 KiB
Org Mode
Raw Normal View History

2019-04-29 09:12:50 +02:00
#+TITLE: Estimating the end-to-end energy consumption of IoT devices along with their impact on Cloud and telecommunication infrastructures
2019-04-10 10:17:39 +02:00
#+EXPORT_EXCLUDE_TAGS: noexport
#+STARTUP: hideblocks
#+OPTIONS: H:5 author:nil email:nil creator:nil timestamp:nil skip:nil toc:nil ^:nil
#+LATEX_CLASS: IEEEtran
#+LATEX_HEADER: \usepackage{hyperref}
2019-05-22 10:15:45 +02:00
#+LATEX_HEADER: \usepackage{booktabs}
2019-05-23 12:05:58 +02:00
#+LATEX_HEADER: \usepackage{subfigure}
2019-05-22 11:24:17 +02:00
#+LATEX_HEADER: \usepackage{graphicx}
2019-05-28 11:01:47 +02:00
#+LATEX_HEADER: \usepackage{xcolor}
2019-04-10 10:41:22 +02:00
#+LATEX_HEADER: \IEEEoverridecommandlockouts
#+LATEX_HEADER: \author{\IEEEauthorblockN{1\textsuperscript{st} Anne-Cécile Orgerie}
#+LATEX_HEADER: \IEEEauthorblockA{\textit{Univ Rennes, Inria, CNRS, IRISA, Rennes, France} \\
#+LATEX_HEADER: Rennes, France \\
#+LATEX_HEADER: anne-cecile.orgerie@irisa.fr}
#+LATEX_HEADER: \and
#+LATEX_HEADER: \IEEEauthorblockN{2\textsuperscript{nd} Loic Guegan}
#+LATEX_HEADER: \IEEEauthorblockA{\textit{Univ Rennes, Inria, CNRS, IRISA, Rennes, France} \\
#+LATEX_HEADER: Rennes, France \\
#+LATEX_HEADER: loic.guegan@irisa.fr}
#+LATEX_HEADER: }
2019-05-28 11:01:47 +02:00
#+BEGIN_EXPORT latex
\newcommand{\hl}[1]{\textcolor{red}{#1}}
#+END_EXPORT
2019-04-10 10:41:22 +02:00
#+BEGIN_EXPORT latex
\begin{abstract}
2019-04-29 09:12:50 +02:00
Information and Communication Technology takes a growing part in the worldwide energy consumption. One of the root causes of this increase lies in the multiplication of connected devices. Each object of the Internet-of-Things often does not consume much energy by itself. Yet, their number and the infrastructures they require to properly work have leverage. In this paper, we combine simulations and real measurements to study the energy impact of IoT devices. In particular, we analyze the energy consumption of Cloud and telecommunication infrastructures induced by the utilization of connected devices, and we propose an end-to-end energy consumption model for these devices.
2019-04-10 10:41:22 +02:00
\end{abstract}
\begin{IEEEkeywords}
component, formatting, style, styling, insert
\end{IEEEkeywords}
#+END_EXPORT
2019-04-10 10:17:39 +02:00
2019-05-20 16:48:17 +02:00
* Introduction [2 col]
* Related Work [1 col]
* Use-Case [1 col]
2019-04-29 09:05:33 +02:00
** Application Characteristic
2019-05-20 10:00:40 +02:00
2019-05-22 10:15:45 +02:00
#+BEGIN_COMMENT
2019-05-04 10:32:19 +02:00
The IoT part is composed of an Access Point (AP), connected to several sensors using WIFI. In the
system, the IoT part is considered as the part where the system data are created. In fact, the
2019-05-20 16:48:17 +02:00
data life cycle start when the sensors records their respective local temperature at a frequency
2019-05-04 10:32:19 +02:00
$f$ and the local timestamp. Then, these data are transmitted through the network along with an
arbitrary sensor id of 128 bits. Finally, the AP is in charge to transmit the data to the cloud
using the network part.
The network part is considered as the medium that link the IoT part to the cloud. It is composed
of several network switches and router and it is considered to be a wired network.
2019-05-22 10:15:45 +02:00
#+END_COMMENT
2019-05-20 10:00:40 +02:00
** Cloud Infrastructure
2019-05-20 16:48:17 +02:00
* System Model [2 col]
2019-05-22 10:15:45 +02:00
2019-05-20 10:00:40 +02:00
The system model is divided in two parts. First, the IoT and the Network part are models through
2019-05-20 16:48:17 +02:00
simulations. Then, the Cloud part is model using real servers connected to watt-meters. In this way,
2019-05-20 10:00:40 +02:00
it is possible to evaluate the end-to-end energy consumption of the system.
** IoT Part
2019-05-25 15:02:38 +02:00
In the first place, the IoT part is composed of several sensors connected to an Access Point (AP)
which forms a cell. This cell is model using the ns-3 network simulator. Consequently, we setup
between 5 and 15 sensors connected to the AP using WIFI 5GHz 802.11n. The node are placed
randomly in a rectangle of 400m2 around the AP which corresponds to a typical real use case. All
the cell nodes are setup with the default WIFI energy model provided by ns-3. The different
energy values used by the energy model are provided on Table \ref{tab:wifi-energy}. These energy
were extracted from previous work\cite{halperin_demystifying_nodate,li_end--end_2018} on
802.11n. Besides, we suppose that the energy source of each nodes are unlimited and thus each of
them can communicate until the end of all the simulations.
As a scenario, sensors send 192 bits packets to the AP composed of: \textbf{1)} A 128 bits
2019-05-20 16:48:17 +02:00
sensors id \textbf{2)} A 32 bits integer representing the temperature \textbf{3)} An integer
2019-05-25 15:02:38 +02:00
timestamp representing the temperature sensing time to store them as time series. The data are
transmitted immediately at each sensing interval $I$ varied from 1s to 60s. Finally, the AP is in
charge of relaying data to the cloud via the network part.
2019-05-20 16:48:17 +02:00
2019-05-20 10:00:40 +02:00
#+BEGIN_EXPORT latex
\begin{table}[]
2019-05-23 12:05:58 +02:00
\centering
\caption{Simulations Energy Parameters}
\label{tab:wifi-energy}
\subtable[Wifi]{
\begin{tabular}{@{}lr@{}}
Parameter & Value \\ \midrule
Supply Voltage & 3.3V \\
Tx & 0.38A \\
Rx & 0.313A \\
Idle & 0.273A \\ \bottomrule
\end{tabular}}
\hspace{0.3cm}
\subtable[Network]{
\label{tab:net-energy}
\begin{tabular}{@{}lr@{}}
Parameter & Value \\ \midrule
2019-05-27 09:55:11 +02:00
Idle & 1W \\
2019-05-23 12:05:58 +02:00
Bytes (Tx/Rx) & 3.4nJ \\
Pkt (Tx/Rx) & 192.0nJ \\ \bottomrule
\end{tabular}
}
2019-05-22 10:15:45 +02:00
\end{table}
2019-05-20 10:00:40 +02:00
#+END_EXPORT
** Network Part
2019-05-25 15:02:38 +02:00
The network part represents the a network section starting from the AP to the Cloud excluding the
server. It is also model into ns-3. We consider the server to be 9 hops away from the AP with a
typical round-trip latency of 100ms from the AP to the server. Each node from the AP to the Cloud
2019-05-28 11:01:47 +02:00
is assume to be network switches with static and dynamic network energy consumption. The first 8
hop are edge switches and the last one is consider to be a core switch as mention in
\cite{jalali_fog_2016}. ECOFEN \cite{orgerie_ecofen:_2011} is used to model the energy
consumption of the network part. ECOFEN is a ns-3 network energy module dedicated to wired
network. It is based on an energy-per-bit model including static energy consumption by assuming a
linear relation between the amount of data sent to the network interface and its power
consumption. The different energy values used to instantiate the ECOFEN energy model for the
network part are shown in Table \ref{tab:net-energy} and come from previous work
\cite{cornea_studying_2014-1}.
2019-05-20 16:48:17 +02:00
2019-04-29 09:05:33 +02:00
** Cloud Part
2019-05-25 15:02:38 +02:00
Finally, to measure the energy consumed by the server, we used real server from the large-scale
test-beds Grid5000 (G5K). In fact, G5K has a cluster called Nova composed of several nodes which
are connected to watt-meters. In this way, we can benefit from real energy measurements. The
server used in the experiment include an Intel Xeon E5-2620 processor with 64 GB of RAM and 600GB
of disk space on a Linux based operating system. This server is configured to use KVM as
virtualization mechanism. We deploy a classical Linux x86_64 distribution on the Virtual Machine
(VM) along with a MySQL database. We used different amount of allocated memory for the VM namely
1024MB/2048MB/4096MB to highlight its effects on the server energy consumption.
2019-05-20 16:48:17 +02:00
2019-05-22 10:15:45 +02:00
The sensors requests are simulated using another server. This server is in charge to send hundred
of requests to the VM in order to fill the database. Consequently, it is easy to vary the
different requests characteristics namely: \textbf{1)} The number request, to virtually
2019-05-25 11:11:08 +02:00
add/remove sensors \textbf{2)} The requests interval.
2019-05-20 16:48:17 +02:00
* Evaluation [3 col]
2019-04-29 09:05:33 +02:00
** IoT/Network Consumption
2019-05-22 15:13:52 +02:00
In a first place, we start by studying the impact of the sensors position on their energy
2019-05-22 11:24:17 +02:00
consumption. To this end, we run several simulations in ns-3 with different sensors position. The
2019-05-28 11:01:47 +02:00
results provided by Table \ref{tab:sensorsSendIntervalEffects} show that sensors position have a very low impact
2019-05-25 15:34:00 +02:00
on the energy consumption and on the application delay. It has an impact of course, but it is very
2019-05-22 15:13:52 +02:00
limited. This due to the fact that in such a scenario with very small number of communications
spread over the time, sensors don't have to contend for accessing to the Wifi channel.
2019-05-22 11:24:17 +02:00
2019-05-28 11:01:47 +02:00
2019-05-22 15:13:52 +02:00
#+BEGIN_EXPORT latex
2019-05-28 11:01:47 +02:00
% Please add the following required packages to your document preamble:
% \usepackage{booktabs}
\begin{table*}[]
\centering
\caption{Sensors send interval effects}
\label{tab:sensorsSendIntervalEffects}
\begin{tabular}{@{}lrrrrr@{}}
\toprule
Sensors Send Interval & 10s & 30s & 50s & 70s & 90s \\ \midrule
Sensors Power Consumption & 13.517\hl{94}W & 13.517\hl{67}W & 13.51767W & 13.51767W & 13.517\hl{61}W \\
Network Power Consumption & 10.441\hl{78}W & 10.441\hl{67}W & 10.44161W & 10.44161W & 10.441\hl{61}W \\
Average Appplication Delay & 17.81360s & 5.91265s & 3.53509s & 2.55086s & 1.93848s \\ \bottomrule
\end{tabular}
\end{table*}
2019-05-22 15:13:52 +02:00
#+END_EXPORT
2019-05-22 11:24:17 +02:00
2019-05-23 12:05:58 +02:00
2019-05-28 11:01:47 +02:00
Previous work \cite{li_end--end_2018} on similar scenario shows that increasing application
accuracy impact strongly the energy consumption in the context of data stream analysis. However,
in our case, application accuracy is driven by the sensing interval and thus, the transmit
frequency of the sensors. Therefore, we varied the transmission interval of the sensors from 1s
to 60s. Some of these results are proposed on Table \ref{tab:sensorsSendIntervalEffects}. In
case of small and sporadic network traffic, these results show that with a reasonable
transmission interval the energy consumption of the IoT/Network if almost not affected by the
variation of this transmission interval. In fact, transmitted data are not large enough to
leverage the energy consumed by the network.
2019-05-23 12:05:58 +02:00
2019-05-25 15:34:00 +02:00
The number of sensors is a dominant factor that leverage the energy consumption of the
2019-05-23 16:37:55 +02:00
IoT/Network part. Therefore, we varied the number of sensors in the Wifi cell to analyze its
2019-05-25 15:34:00 +02:00
impact. The Figure \ref{fig:sensorsNumber} represents the energy consumed by each simulated part
according the the number of sensors. It is clear that the energy consumed by the network is the
dominant part. However, since the number of sensors is increasing the energy consumed by the
network will become negligible face to the energy consume by the sensors. In fact, deploying new
sensors in the cell do not introduce much network load. To this end, sensors energy consumption
is dominant.
2019-05-23 16:37:55 +02:00
#+BEGIN_EXPORT latex
\begin{figure}
\centering
\includegraphics[width=0.6\linewidth]{./plots/numberSensors-WIFINET.png}
\caption{Analysis of the variation of the number of sensors on the IoT/Network part energy consumption.}
\label{fig:sensorsNumber}
\end{figure}
#+END_EXPORT
2019-05-22 11:24:17 +02:00
2019-05-04 10:32:19 +02:00
** Cloud Energy Consumption
2019-05-23 16:37:55 +02:00
In this End-To-End energy consumption study, cloud account for a huge part of the overall energy
consumption. According a report \cite{shehabi_united_2016-1} on United States data center energy
2019-05-25 15:02:38 +02:00
usage, the average Power Usage Effectiveness (PUE) of an hyper-scale data center is 1.2. Thus, in
2019-05-23 16:37:55 +02:00
our analysis, all energy measurement on cloud server will account for this PUE.
2019-05-24 15:54:00 +02:00
2019-05-25 15:02:38 +02:00
In a first place, we analyze the impact of the VM allocated memory on the server energy
2019-05-24 15:54:00 +02:00
consumption. Figure \ref{fig:vmSize} depict the server energy consumption according to the VM
2019-05-25 15:34:00 +02:00
allocated memory for 20 sensors sending data every 10s. Note that horizontal red line represent
the average energy consumption for the considered sample of energy values. We can see that at
each sensing interval, server face to peaks of energy consumption. However, VM allocated memory
do not influence energy consumption. In fact, simple database requests do not need any particular
huge memory access and processing time. Thus, remaining experiments are based on VM with 1024MB
of allocated memory.
2019-05-24 15:54:00 +02:00
#+BEGIN_EXPORT latex
\begin{figure}
\centering
\includegraphics[width=0.8\linewidth]{./plots/vmSize-cloud.png}
\caption{VM size impact on the server energy consumption using 20 sensors sending data every 10s}
\label{fig:vmSize}
\end{figure}
#+END_EXPORT
2019-05-23 16:37:55 +02:00
2019-05-24 15:54:00 +02:00
Next, we study the effects of increasing the number of sensors on the server energy consumption.
Figure \ref{fig:sensorsNumber-server} present the results of the average server energy
consumption when varying the number of sensors from 20 to 500 while Figure
\ref{fig:sensorsNumber-WPS} present the average server energy cost per sensors according to the
2019-05-25 15:34:00 +02:00
number of sensors. These results show a clear linear relation between the number of sensors and
the server energy consumption. Moreover, we can see that the more sensors we have per server, the
2019-05-25 10:43:37 +02:00
more energy we can save. In fact, since the idle server energy consumption is high, it is more
2019-05-25 15:34:00 +02:00
energy efficient to maximize the number of sensors per server. As shown on Figure
\ref{fig:sensorsNumber-WPS}, a significant amount of energy can be save when passing from 20 to
300 sensors per server.
2019-05-24 15:54:00 +02:00
#+BEGIN_EXPORT latex
\begin{figure}
\centering
\subfigure[Average server energy consumption]{
\includegraphics[width=0.4\linewidth]{./plots/sensorsNumberLine-cloud.png}
\label{fig:sensorsNumber-server}
}
\hspace{0.5cm}
\subfigure[Average sensors energy cost on server]{
\includegraphics[width=0.4\linewidth]{./plots/WPS-cloud.png}
\label{fig:sensorsNumber-WPS}
}
\caption{Server energy consumption for sensors sending data every 10s}
\label{fig:sensorsNumber-cloud}
\end{figure}
#+END_EXPORT
2019-05-25 10:43:37 +02:00
2019-05-25 15:34:00 +02:00
A last parameter can leverage server energy consumption namely sensors send interval. In addition
to increasing the application accuracy, sensors send interval increase network traffic and
database accesses. Figure \ref{fig:sensorsFrequency} present the impact on the server energy
2019-05-25 11:11:08 +02:00
consumption of changing the send interval of 50 sensors to 1s, 10s and 30s. We can see that, the
2019-05-25 15:34:00 +02:00
lower sensors send interval is, the more server energy consumption peaks occurs. Therefore, it
leads to an increase of the server energy consumption.
2019-05-25 10:43:37 +02:00
#+BEGIN_EXPORT latex
\begin{figure}
2019-05-25 11:11:08 +02:00
\centering
\includegraphics[scale=0.5]{plots/sendInterval-cloud.png}
\label{fig:sensorsFrequency}
\caption{Server energy consumption for 50 sensors sending request at different interval.}
2019-05-25 10:43:37 +02:00
\end{figure}
#+END_EXPORT
2019-05-25 14:38:16 +02:00
** End-To-End Consumption
2019-05-24 15:54:00 +02:00
2019-05-25 14:38:16 +02:00
To have an overview of the energy consume by the system, it is important to consider the
2019-05-25 15:34:00 +02:00
end-to-end energy consumption. The Figure \ref{fig:end-to-end} represents the end-to-end system
2019-05-25 14:38:16 +02:00
energy consumption while varying the number of sensors. It is important to see that, for
small-scale systems, the server energy consumption is dominant face to the energy consumed by the
sensors. However, since we are using a single server, large-scale sensors deployment lead to an
2019-05-25 15:34:00 +02:00
increasing consumption of energy in the IoT part. On the other side, network energy consumption
is stable regarding to the number of sensors since the system use case do not required large data
2019-05-28 11:01:47 +02:00
transfer. Thus, it is important to remember that, to save energy, we should maximize the number
2019-05-25 15:34:00 +02:00
of sensors handle by each cloud server while keeping reasonable sensors request intervals.
2019-05-25 14:38:16 +02:00
#+BEGIN_EXPORT latex
\begin{figure}
\centering
\hspace{1cm}
\includegraphics[scale=0.3]{plots/final.png}
\label{fig:end-to-end}
\caption{End-to-end network energy consumption using sensors interval of 10s}
\end{figure}
#+END_EXPORT
2019-05-24 15:54:00 +02:00
2019-05-25 14:38:16 +02:00
2019-05-20 16:48:17 +02:00
* Discussion [1 col]
* Conclusion [1 col]
* References [1 col]
\bibliographystyle{IEEEtran}
\bibliography{references}
2019-04-10 10:41:22 +02:00
2019-05-22 10:15:45 +02:00
* Data Provenance :noexport:
2019-05-22 11:24:17 +02:00
:PROPERTIES:
:header-args: :eval never-export
:END:
2019-05-24 15:54:00 +02:00
** Data Analysis (R Scripts)
*** Utils
**** R
2019-05-22 10:15:45 +02:00
RUtils is intended to load logs (data.csv) and providing
simple plot function for them.
2019-05-24 15:54:00 +02:00
#+NAME: RUtils
#+BEGIN_SRC R :eval never
2019-05-22 10:15:45 +02:00
library("tidyverse")
# Fell free to update the following
2019-05-24 15:54:00 +02:00
labels=c(time="Time (s)",sensorsSendInterval="Sensors Send Interval (s)", sensorsNumber="Number of sensors")
PUE=1.2
ns3SimTime=1800
g5kSimTime=300
loadData=function(path){
data=read_csv(path)
if("sensorsEnergy"%in%colnames(data)){ # If it is ns3 logs
data=data%>%mutate(sensorsEnergy=sensorsEnergy/ns3SimTime) # Convert to watts
data=data%>%mutate(networkEnergy=networkEnergy/ns3SimTime)
data=data%>%mutate(networkEnergy=networkEnergy+getSwitchesIDLE(sensorsNumber,sensorsSendInterval)) # Add Idle conso of switches
2019-05-24 15:54:00 +02:00
data=data%>%mutate(totalEnergy=totalEnergy/ns3SimTime)
}
else{ # Log from g5k
data=data%>%mutate(energy=energy*PUE) # Take into account PUE
data=data%>%filter(time<=g5kSimTime) # Remove extrats values (theorical sim time != real sim time)
}
}
2019-05-22 10:15:45 +02:00
getSwitchesIDLE=function(nbSensors, sendInterval){
pktSize=192
nEdgeRouter=8
nCoreRouter=1
EdgeIdle=4095
EdgeMax=4550
EdgeTraffic=560*10^9
CoreIdle=11070
CoreMax=12300
CoreTraffic=4480*10^9
# Apply 0.6 factor
EdgeTraffic=EdgeTraffic*0.6
CoreTraffic=CoreTraffic*0.6
totalTraffic=pktSize/sendInterval*nbSensors
EdgeConso=EdgeIdle*(totalTraffic/EdgeTraffic)
CoreConso=CoreIdle*(totalTraffic/CoreTraffic)
return(EdgeConso+CoreConso)
}
2019-05-24 15:54:00 +02:00
# Get label according to varName
2019-05-22 10:15:45 +02:00
getLabel=function(varName){
if(is.na(labels[varName])){
return(varName)
}
return(labels[varName])
}
2019-05-24 15:54:00 +02:00
applyTheme=function(plot,...){
palette<- c("#00AFBB", "#E7B800", "#FC4E07","#0abb00")
plot=plot+
theme_bw(...)+
scale_fill_manual(values=palette)+
scale_colour_manual(values=palette)
return(plot)
2019-05-22 10:15:45 +02:00
}
2019-05-22 10:15:45 +02:00
#+END_SRC
2019-05-24 15:54:00 +02:00
**** Bash
***** Plots -> PDF
2019-05-22 10:15:45 +02:00
Merge all plots in plots/ folder into a pdf file.
#+NAME: plotToPDF
#+BEGIN_SRC bash :results output :noweb yes
orgFile="plots/plots.org"
<<singleRun>> # To get all default arguments
# Write helper function
function write {
echo "$1" >> $orgFile
}
echo "#+TITLE: Analysis" > $orgFile
write "#+LATEX_HEADER: \usepackage{fullpage}"
write "#+OPTIONS: toc:nil"
# Default arguments
write '\begin{center}'
write '\begin{tabular}{lr}'
write 'Parameters & Values\\'
write '\hline'
write "sensorsPktSize & ${sensorsPktSize} bytes\\\\"
write "sensorsSendInterval & ${sensorsSendInterval}s\\\\"
write "sensorsNumber & ${sensorsNumber}\\\\"
write "nbHop & ${nbHop}\\\\"
write "linksBandwidth & ${linksBandwidth}Mbps\\\\"
write "linksLatency & ${linksLatency}ms\\\\"
write '\end{tabular}'
write '\newline'
write '\end{center}'
for plot in $(find plots/ -type f -name "*.png")
do
write "\includegraphics[width=0.5\linewidth]{$(basename ${plot})}"
done
# Export to pdf
emacs $orgFile --batch -f org-latex-export-to-pdf --kill
#+END_SRC
2019-05-24 15:54:00 +02:00
***** CSVs -> data.csv (G5K)
Merge all energy file into one (and add additional fields).
2019-05-22 10:15:45 +02:00
2019-05-24 15:54:00 +02:00
#+NAME: G5K-mergeCSV
#+BEGIN_SRC sh
#!/bin/bash
2019-05-22 10:15:45 +02:00
2019-05-24 15:54:00 +02:00
whichLog="last"
logsLocation="logs/g5k"
whichLog="${logsLocation}/${whichLog}"
logFile="$(dirname $(readlink -f $0))"/$whichLog/simLogs.txt
dataFile=$(dirname "$logFile")/data.csv
getValue () {
line=$(echo "$1" | grep "Simulation para"|sed "s/Simulation parameters: //g")
key=$2
echo "$line"|awk 'BEGIN{RS=" ";FS=":"}"'$key'"==$1{gsub("\n","",$0);print $2}'
}
##### Add extract info to energy #####
IFS=$'\n'
for cmd in $(cat $logFile|grep "Simulation parameters")
do
nodeName=$(getValue $cmd serverNodeName)
from=$(getValue $cmd simStart)
to=$(getValue $cmd simEnd)
vmSize=$(getValue $cmd vmSize)
nbSensors=$(getValue $cmd nbSensors)
simKey=$(getValue $cmd simKey)
sendInterval=$(getValue $cmd sensorsSendInterval)
csvFile="$whichLog/${simKey}_${vmSize}VMSIZE_${nbSensors}NBSENSORS_${from}${to}.csv"
csvFileIDLE="$whichLog/${simKey}_${vmSize}VMSIZE_${nbSensors}NBSENSORS_${from}${to}_IDLE.csv"
tmpFile=${csvFile}_tmp
echo ts,energy,simKey,vmSize,nbSensors,time,state,sendInterval > $tmpFile
minTs=$(tail -n+2 $csvFile|awk -F"," 'BEGIN{min=0}$1<min||min==0{min=$1}END{print(min)}') # To compute ts field
minTsIDLE=$(tail -n+2 $csvFileIDLE|awk -F"," 'BEGIN{min=0}$1<min||min==0{min=$1}END{print(min)}') # To compute ts field
tail -n+2 ${csvFile} | awk -F"," '{print $0",'$simKey','$vmSize','$nbSensors',"$1-'$minTs'",sim,"'$sendInterval'}' >> $tmpFile
tail -n+2 ${csvFileIDLE} | awk -F"," '{print $0",'$simKey','$vmSize','$nbSensors',"$1-'$minTsIDLE'",IDLE,"'$sendInterval'}' >> $tmpFile
done
2019-05-22 10:15:45 +02:00
2019-05-24 15:54:00 +02:00
##### Fill dataFile #####
echo ts,energy,simKey,vmSize,nbSensors,time,state,sendInterval > $dataFile
for tmpFile in $(find ${whichLog}/*_tmp -type f)
2019-05-22 10:15:45 +02:00
do
2019-05-24 15:54:00 +02:00
tail -n+2 $tmpFile >> $dataFile
rm $tmpFile # Pay attention to this line :D
2019-05-22 10:15:45 +02:00
done
#+END_SRC
2019-05-24 15:54:00 +02:00
#+RESULTS: G5K-mergeCSV
#+RESULTS: mergeCSV
***** Log -> data.csv (ns3)
logToCSV extract usefull data from logs and put them into logs/data.csv.
#+NAME: NS3-logToCSV
#+BEGIN_SRC bash :results output
logsFolder="./logs/ns3/last/"
csvOutput="$logsFolder/data.csv"
# First save csv header line
aLog=$(find $logsFolder -type f -name "*.org"|head -n 1)
metrics=$(cat $aLog|grep "\-METRICSLINE\-"|sed "s/-METRICSLINE-//g")
echo $metrics | awk '{for(i=1;i<=NF;i++){split($i,elem,":");printf(elem[1]);if(i<NF)printf(",");else{print("")}}}' > $csvOutput
# Second save all values
for logFile in $(find $logsFolder -type f -name "*.org")
do
metrics=$(cat $logFile|grep "\-METRICSLINE\-"|sed "s/-METRICSLINE-//g")
echo $metrics | awk '{for(i=1;i<=NF;i++){split($i,elem,":");printf(elem[2]);if(i<NF)printf(",");else{print("")}}}' >> $csvOutput
done
#+END_SRC
#+RESULTS: NS3-logToCSV
2019-05-23 12:05:58 +02:00
2019-05-22 10:15:45 +02:00
2019-05-24 15:54:00 +02:00
*** Plot Scripts
**** Random R Scripts
2019-05-23 12:05:58 +02:00
2019-05-28 11:01:47 +02:00
Table sensorsSendInterval~Sensors+NetEnergyconsumption
#+BEGIN_SRC R :noweb yes :results output
<<RUtils>>
data=loadData("logs/ns3/last/data.csv")
2019-05-28 11:01:47 +02:00
sensorsE=data%>%filter(simKey=="SENDINTERVAL",sensorsNumber==15) %>%select(sensorsSendInterval,sensorsEnergy)%>%arrange(sensorsSendInterval)
delay=data%>%filter(simKey=="SENDINTERVAL",sensorsNumber==15) %>%select(sensorsSendInterval,avgDelay)%>%arrange(sensorsSendInterval)
netE=data%>%filter(simKey=="SENDINTERVAL",sensorsNumber==15) %>%select(sensorsSendInterval,networkEnergy)%>%arrange(sensorsSendInterval)
formatData=right_join(sensorsE,netE)%>%right_join(delay)%>%filter(((sensorsSendInterval/10)%%2)!=0)
2019-05-28 11:01:47 +02:00
print(t(formatData))
#+END_SRC
#+RESULTS:
2019-05-28 11:01:47 +02:00
: [,1] [,2] [,3] [,4] [,5]
: sensorsSendInterval 10.00000 30.00000 50.00000 70.00000 90.00000
: sensorsEnergy 13.51794 13.51767 13.51767 13.51767 13.51761
: networkEnergy 10.44178 10.44167 10.44161 10.44161 10.44161
: avgDelay 17.81360 5.91265 3.53509 2.55086 1.93848
Figure Sensors Position ~ Energy/Delay
#+BEGIN_SRC R :noweb yes :results graphics :file plots/sensorsPosition-delayenergy.png
<<RUtils>>
tr=11 # Offset to center delay plot
data=loadData("logs/ns3/last/data.csv")
data=data%>%filter(simKey=="SENSORSPOS",sensorsNumber==9)
p=ggplot(data,aes(y=sensorsEnergy,x=positionSeed,color="Energy"))+xlab(getLabel("Sensors Position Seed"))+ylab(getLabel("Sensors Power Consumption (W)"))+
geom_line()+geom_point()+geom_line(aes(y=(avgDelay-tr),color="Delay"))+geom_point(aes(y=(avgDelay-tr),color="Delay"))+expand_limits(y=c(0,15))+
scale_y_continuous(sec.axis = sec_axis(~.+tr, name = "Application Delay (s)")) +
guides(color=guide_legend(title="Curves"))
p=applyTheme(p)
p=p+theme(axis.title.y.right = element_text(margin = margin(t = 0, r = -8, b = 0, l = 10)))
ggsave("plots/sensorsPosition-delayenergy.png",dpi=80, width=4, height=3.2)
#+END_SRC
#+RESULTS:
[[file:plots/sensorsPosition-delayenergy.png]]
2019-05-24 15:54:00 +02:00
Watt per sensor on server
#+BEGIN_SRC R :noweb yes :results output
<<RUtils>>
# Load data
data=loadData("./logs/g5k/last/data.csv")
2019-05-23 12:05:58 +02:00
2019-05-24 15:54:00 +02:00
data=data%>%filter(state=="sim",simKey=="nbSensors")%>%ungroup()
2019-05-23 12:05:58 +02:00
2019-05-22 11:24:17 +02:00
2019-05-24 15:54:00 +02:00
data=data%>%group_by(nbSensors)%>%mutate(avgEnergy=mean(energy))%>%distinct()%>%ungroup()
data=data%>%distinct(nbSensors,.keep_all=TRUE)
data=data%>%mutate(WPS=(avgEnergy/nbSensors))
2019-05-22 11:24:17 +02:00
2019-05-24 15:54:00 +02:00
print(data%>%select(WPS,nbSensors))
#+END_SRC
2019-05-22 11:24:17 +02:00
2019-05-24 15:54:00 +02:00
Impact of vm size
#+BEGIN_SRC R :results graphics :file plots/vmSizeBar-cloud.png
library("tidyverse")
PUE=1.2
# Load data
data=read_csv("./logs/g5k/last/data.csv")
data=data%>%filter(state=="sim",simKey=="vmSize")%>%mutate(energy=PUE*energy)%>%filter(time<=300)
data=data%>%group_by(vmSize)%>%mutate(energy=mean(energy))%>%slice(1L)%>%ungroup()
data=data%>%mutate(vmSize=as.character(vmSize))
ggplot(data) + geom_bar(aes(x=vmSize,y=energy),stat="identity")+expand_limits(y=c(75,100))+ylab("Server Power Consumption (W)")+
2019-05-25 11:11:08 +02:00
xlab("Experiment Time (s)")+scale_y_log10()
2019-05-24 15:54:00 +02:00
ggsave("plots/vmSizeBar-cloud.png",dpi=90,height=3,width=6)
2019-05-22 11:24:17 +02:00
#+END_SRC
#+RESULTS:
2019-05-24 15:54:00 +02:00
[[file:plots/vmSizeBar-cloud.png]]
2019-05-22 11:24:17 +02:00
2019-05-22 10:15:45 +02:00
#+NAME: ssiNet
#+BEGIN_SRC R :noweb yes :results graphics :file plots/sensorsSendInterval-net.png
<<NS3-RUtils>>
# Load Data
data=read_csv("logs/ns3/last/data.csv")
data%>%filter(simKey=="SENDINTERVAL",sensorsNumber==20) %>% ggplot(aes(x=sensorsSendInterval,y=networkEnergy))+xlab(getLabel("sensorsSendInterval"))+ylab(getLabel("networkEnergy"))+
geom_line()+labs(title="For 20 sensors")
ggsave("plots/sensorsSendInterval-net.png",dpi=80)
#+END_SRC
2019-05-22 11:24:17 +02:00
Effect of the number of sensors on the application delay
#+BEGIN_SRC R :noweb yes :results graphics :file plots/delay-nbsensors.png
<<NS3-RUtils>>
# Load Data
data=read_csv("logs/ns3/last/data.csv")
data%>%filter(simKey=="NBSENSORS") %>% ggplot(aes(y=avgDelay,x=sensorsNumber))+xlab(getLabel("sensorsNumber"))+ylab(getLabel("avgDelay"))+
geom_line()+labs(title="For 20 sensors")
ggsave("plots/delay-nbsensors.png",dpi=80)
#+END_SRC
#+RESULTS:
[[file:plots/delay-nbsensors.png]]
2019-05-22 10:15:45 +02:00
#+NAME: ssiWifi
#+BEGIN_SRC R :noweb yes :results graphics :file plots/sensorsSendInterval-wifi.png
<<NS3-RUtils>>
data=read_csv("logs/ns3/last/data.csv")
data%>%filter(simKey=="SENDINTERVAL",sensorsNumber==20) %>% ggplot(aes(x=sensorsSendInterval,y=sensorsEnergy))+xlab(getLabel("sensorsSendInterval"))+ylab(getLabel("sensorsEnergy"))+
geom_line() + geom_line()+labs(title="For 20 sensors")
ggsave("plots/sensorsSendInterval-wifi.png",dpi=80)
#+END_SRC
2019-05-28 11:03:28 +02:00
#+BEGIN_SRC R :results graphics :noweb yes :file plots/plot-final.png :session *R*
2019-05-22 10:15:45 +02:00
<<NS3-RUtils>>
simTime=1800
# Network
data=read_csv("logs/ns3/last/data.csv")
data=data%>%filter(simKey=="NBSENSORS")
dataC5=data%>%filter(sensorsNumber==5)%>% mutate(energy=networkEnergy/simTime) %>%select(energy,sensorsNumber)
dataC10=data%>%filter(sensorsNumber==10)%>%mutate(energy=networkEnergy/simTime) %>%select(energy,sensorsNumber)
dataNet=rbind(dataC5,dataC10)%>%mutate(type="Network")
# Network
dataS5=data%>%filter(sensorsNumber==5)%>% mutate(energy=sensorsEnergy/simTime) %>%select(energy,sensorsNumber)
dataS10=data%>%filter(sensorsNumber==10)%>%mutate(energy=sensorsEnergy/simTime) %>%select(energy,sensorsNumber)
dataS=rbind(dataS5,dataS10)%>%mutate(type="Sensors")
data=rbind(dataNet,dataS)%>%mutate(sensorsNumber=as.character(sensorsNumber))
ggplot(data)+geom_bar(aes(x=sensorsNumber,y=energy,fill=type),stat="identity")+xlab("Sensors Number")+ylab("Power Consumption (W)")+guides(fill=guide_legend(title="Part"))
2019-05-28 11:03:28 +02:00
ggsave("plots/plot-final.png",dpi=80)
2019-05-22 10:15:45 +02:00
#+END_SRC
2019-05-24 15:54:00 +02:00
**** Plot In Paper
2019-05-22 15:13:52 +02:00
2019-05-28 11:01:47 +02:00
Power sensors vs network
#+BEGIN_SRC R :noweb yes :results graphics :file plots/numberSensors-WIFINET.png :session *R*
<<RUtils>>
2019-05-22 15:13:52 +02:00
2019-05-28 11:01:47 +02:00
data=loadData("logs/ns3/last/data.csv")
data=data%>%filter(simKey=="NBSENSORS")
dataW=data%>%mutate(energy=sensorsEnergy)%>% mutate(type="Sensors") %>% select(sensorsNumber,energy,type)
dataN=data%>%mutate(energy=networkEnergy)%>% mutate(type="Network") %>% select(sensorsNumber,energy,type)
2019-05-22 15:13:52 +02:00
2019-05-28 11:01:47 +02:00
data=rbind(dataN,dataW)
data=data%>%mutate(sensorsNumber=as.character(sensorsNumber))
data=data%>%mutate(sensorsNumber=fct_reorder(sensorsNumber,as.numeric(sensorsNumber)))
data=data%>%filter(sensorsNumber%in%c(2,4,6,8,10))
2019-05-22 15:13:52 +02:00
2019-05-28 11:01:47 +02:00
p=ggplot(data)+geom_bar(aes(x=sensorsNumber,y=energy,fill=type),position="dodge",stat="identity")+
xlab(getLabel("sensorsNumber"))+ ylab("Power Consumption (W)") + guides(fill=guide_legend(title=""))
p=applyTheme(p)+theme(text = element_text(size=15))
2019-05-22 15:13:52 +02:00
2019-05-28 11:01:47 +02:00
size=5
ggsave("plots/numberSensors-WIFINET.png",dpi=90,width=size,height=size-1)
#+END_SRC
2019-05-22 10:15:45 +02:00
2019-05-28 11:01:47 +02:00
#+RESULTS:
[[file:plots/numberSensors-WIFINET.png]]
2019-05-22 10:15:45 +02:00
2019-05-28 11:01:47 +02:00
Final plot: Energy cloud, network and sensors
#+BEGIN_SRC R :noweb yes :results graphics :file plots/final.png
<<RUtils>>
2019-05-22 10:15:45 +02:00
2019-05-28 11:01:47 +02:00
# Linear Approx
approx=function(data1, data2,nbSensors){
x1=data1$sensorsNumber
y1=data1$energy
2019-05-22 10:15:45 +02:00
2019-05-28 11:01:47 +02:00
x2=data2$sensorsNumber
y2=data2$energy
2019-05-22 10:15:45 +02:00
2019-05-28 11:01:47 +02:00
a=((y2-y1)/(x2-x1))
b=y1-a*x1
2019-05-22 10:15:45 +02:00
2019-05-28 11:01:47 +02:00
return(a*nbSensors+b)
2019-05-22 10:15:45 +02:00
2019-05-28 11:01:47 +02:00
}
2019-05-22 10:15:45 +02:00
2019-05-28 11:01:47 +02:00
# Load data
data=loadData("./logs/g5k/last/data.csv")
data=data%>%filter(state=="sim",simKey=="nbSensors")
2019-05-22 10:15:45 +02:00
2019-05-28 11:01:47 +02:00
# Cloud
data20=data%>%filter(nbSensors==20)%>%mutate(energy=mean(energy)) %>% slice(1L)
data100=data%>%filter(nbSensors==100)%>%mutate(energy=mean(energy)) %>% slice(1L)
data300=data%>%filter(nbSensors==300)%>%mutate(energy=mean(energy)) %>% slice(1L)
dataCloud=rbind(data20,data100,data300)%>%mutate(sensorsNumber=nbSensors)%>%mutate(type="Cloud")%>%select(sensorsNumber,energy,type)
2019-05-22 10:15:45 +02:00
2019-05-28 11:01:47 +02:00
# Network
data=loadData("./logs/ns3/last/data.csv")
data=data%>%filter(simKey=="NBSENSORS")
dataN5=data%>%filter(sensorsNumber==5)%>% mutate(energy=networkEnergy) %>%select(energy,sensorsNumber)
dataN10=data%>%filter(sensorsNumber==10)%>%mutate(energy=networkEnergy) %>%select(energy,sensorsNumber)
dataNet=rbind(dataN5,dataN10)
fakeNet=tibble(sensorsNumber=c(20,100,300))
fakeNet=fakeNet%>%mutate(energy=approx(dataN5,dataN10,sensorsNumber),type="Network")
# Sensors
dataS5=data%>%filter(sensorsNumber==5)%>% mutate(energy=sensorsEnergy) %>%select(energy,sensorsNumber)
dataS10=data%>%filter(sensorsNumber==10)%>%mutate(energy=sensorsEnergy) %>%select(energy,sensorsNumber)
dataS=rbind(dataS5,dataS10)
fakeS=tibble(sensorsNumber=c(20,100,300))
fakeS=fakeNet%>%mutate(energy=approx(dataS5,dataS10,sensorsNumber),type="Sensors")
# Combine Net/Sensors/Cloud and order factors
fakeData=rbind(fakeNet,fakeS,dataCloud)
fakeData=fakeData%>%mutate(sensorsNumber=as.character(sensorsNumber))
fakeData=fakeData%>%mutate(sensorsNumber=fct_reorder(sensorsNumber,as.numeric(sensorsNumber)))
fakeData$type=factor(fakeData$type,ordered=TRUE,levels=c("Sensors","Network","Cloud"))
# Plot
p=ggplot(fakeData)+geom_bar(position="dodge2",colour="black",aes(x=sensorsNumber,y=energy,fill=type),stat="identity")+
xlab("Sensors Number")+ylab("Power Consumption (W)")+guides(fill=guide_legend(title="System Part"))
p=applyTheme(p)+theme(text = element_text(size=16))
ggsave("plots/final.png",dpi=90,width=8,height=5.5)
2019-05-22 10:15:45 +02:00
2019-05-28 11:01:47 +02:00
#+END_SRC
2019-05-22 10:15:45 +02:00
2019-05-28 11:01:47 +02:00
#+RESULTS:
[[file:plots/final.png]]
2019-05-22 10:15:45 +02:00
2019-05-23 16:37:55 +02:00
2019-05-28 11:01:47 +02:00
Impact of vm size
#+BEGIN_SRC R :noweb yes :results graphics :noweb yes :file plots/vmSize-cloud.png
<<RUtils>>
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
# Load data
data=loadData("./logs/g5k/last/data.csv")
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
data=data%>%filter(state=="sim",simKey=="vmSize")%>%filter(time<=300)
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
data=data%>%mutate(vmSize=paste0(vmSize," MB"))
data=data%>%group_by(vmSize)%>%mutate(avgEnergy=mean(energy))%>%ungroup()
p=ggplot(data,aes(x=time, y=energy)) + geom_line()+facet_wrap(~vmSize)+geom_hline(aes(yintercept=avgEnergy),color="Red",size=1.0)+expand_limits(y=c(0,40))+ylab("Server Power Consumption (W)")+
xlab("Experiment Time (s)")
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
p=applyTheme(p)
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
ggsave("plots/vmSize-cloud.png",dpi=90,height=3,width=6)
#+END_SRC
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
#+RESULTS:
[[file:plots/vmSize-cloud.png]]
2019-05-23 16:37:55 +02:00
2019-05-28 11:01:47 +02:00
Impact of sensors number
#+BEGIN_SRC R :noweb yes :results graphics :file plots/sensorsNumber-cloud.png
<<RUtils>>
# Load data
data=loadData("./logs/g5k/last/data.csv")
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
data=data%>%filter(state=="sim",simKey=="nbSensors")%>%ungroup()
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
data=data%>%mutate(nbSensorsSort=nbSensors)
data=data%>%mutate(nbSensors=paste0(nbSensors," Sensors"))
data$nbSensors=fct_reorder(data$nbSensors, data$nbSensorsSort)
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
data=data%>%group_by(nbSensors)%>%mutate(avgEnergy=mean(energy))%>%ungroup()
p=ggplot(data,aes(x=time, y=energy)) + geom_line()+facet_wrap(~nbSensors)+expand_limits(y=c(0,40))+ylab("Server Power Consumption (W)")+
xlab("Experiment Time (s)")+geom_hline(aes(yintercept=avgEnergy),color="Red",size=1.0)
2019-05-23 16:37:55 +02:00
2019-05-28 11:01:47 +02:00
p=applyTheme(p)
ggsave("plots/sensorsNumber-cloud.png",dpi=90,height=3,width=6)
#+END_SRC
2019-05-23 16:37:55 +02:00
2019-05-28 11:01:47 +02:00
#+RESULTS:
[[file:plots/sensorsNumber-cloud.png]]
2019-05-24 15:54:00 +02:00
#+BEGIN_SRC R :noweb yes :results graphics :file plots/sensorsNumberLine-cloud.png :session *R:2*
<<RUtils>>
# Load data
data=loadData("./logs/g5k/last/data.csv")
2019-05-23 16:37:55 +02:00
2019-05-24 15:54:00 +02:00
data=data%>%filter(state=="sim",simKey=="nbSensors")%>%ungroup()
2019-05-23 16:37:55 +02:00
2019-05-24 15:54:00 +02:00
data=data%>%group_by(nbSensors)%>%mutate(avgEnergy=mean(energy))%>%distinct()%>%ungroup()
data=data%>%distinct(nbSensors,.keep_all=TRUE)
data=data%>%mutate(WPS=(avgEnergy/nbSensors))
p=ggplot(data,aes(x=nbSensors, y=avgEnergy)) + geom_point() +geom_line()+
xlab(getLabel("sensorsNumber"))+ylab("Average server power consumption (W)")
2019-05-24 15:54:00 +02:00
p=applyTheme(p)+theme(text = element_text(size=14))+ expand_limits(y=108)
ggsave("plots/sensorsNumberLine-cloud.png",dpi=90,height=4.5,width=4)
2019-05-28 11:01:47 +02:00
#+END_SRC
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
#+RESULTS:
[[file:plots/sensorsNumberLine-cloud.png]]
#+BEGIN_SRC R :noweb yes :results graphics :file plots/WPS-cloud.png :session *R:2*
<<RUtils>>
# Load data
data=loadData("./logs/g5k/last/data.csv")
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
data=data%>%filter(state=="sim",simKey=="nbSensors")%>%ungroup()
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
data=data%>%group_by(nbSensors)%>%mutate(avgEnergy=mean(energy))%>%distinct()%>%ungroup()
data=data%>%distinct(nbSensors,.keep_all=TRUE)
data=data%>%mutate(WPS=(avgEnergy/nbSensors))
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
oldNb=data$nbSensors
data=data%>%mutate(nbSensors=as.character(nbSensors))
data$nbSensors=fct_reorder(data$nbSensors,oldNb)
p=ggplot(data,aes(x=nbSensors, y=WPS)) + geom_bar(stat="identity")+
xlab(getLabel("sensorsNumber"))+ylab("Server power cost per sensors (W)")
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
p=applyTheme(p)+theme(text = element_text(size=14))+ theme(axis.title.y = element_text(margin = margin(t = 0, r = 8, b = 0, l = 0)))
ggsave("plots/WPS-cloud.png",dpi=90,height=4,width=4)
#+END_SRC
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
#+RESULTS:
[[file:plots/WPS-cloud.png]]
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
#+BEGIN_SRC R :noweb yes :results graphics :file plots/sendInterval-cloud.png
<<RUtils>>
# Load data
data=loadData("./logs/g5k/last/data.csv")
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
data=data%>%filter(state=="sim",simKey=="sendInterval")%>%ungroup()
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
oldSendInterval=data$sendInterval
data=data%>%mutate(sendInterval=paste0(sendInterval,"s"))
data$sendInterval=fct_reorder(data$sendInterval,oldSendInterval)
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
data=data%>%group_by(sendInterval)%>%mutate(avgEnergy=mean(energy))%>%ungroup()
print(data)
p=ggplot(data,aes(x=time, y=energy)) + geom_line()+facet_wrap(~sendInterval)+expand_limits(y=c(0,40))+ylab("Server power consumption (W)")+
xlab("Experiment Time (s)")+geom_hline(aes(yintercept=avgEnergy),color="Red",size=1.0)
2019-05-24 15:54:00 +02:00
2019-05-28 11:01:47 +02:00
p=applyTheme(p)
ggsave("plots/sendInterval-cloud.png",dpi=120,height=3,width=6)
#+END_SRC
2019-05-23 16:37:55 +02:00
2019-05-28 11:01:47 +02:00
#+RESULTS:
[[file:plots/sendInterval-cloud.png]]
2019-05-23 16:37:55 +02:00
2019-04-10 10:17:39 +02:00
* Emacs settings :noexport:
# Local Variables:
# eval: (unless (boundp 'org-latex-classes) (setq org-latex-classes nil))
# eval: (add-to-list 'org-latex-classes
2019-04-10 10:41:22 +02:00
# '("IEEEtran" "\\documentclass[conference]{IEEEtran}\n \[NO-DEFAULT-PACKAGES]\n \[EXTRA]\n" ("\\section{%s}" . "\\section*{%s}") ("\\subsection{%s}" . "\\subsection*{%s}") ("\\subsubsection{%s}" . "\\subsubsection*{%s}") ("\\paragraph{%s}" . "\\paragraph*{%s}") ("\\subparagraph{%s}" . "\\subparagraph*{%s}")))
2019-04-10 10:17:39 +02:00
# End:
2019-05-22 10:15:45 +02:00