Update paper

This commit is contained in:
Loic Guegan 2019-05-25 11:11:08 +02:00
parent dbb3a199dc
commit 827d992533
5 changed files with 15 additions and 10 deletions

View file

@ -128,7 +128,7 @@ component, formatting, style, styling, insert
The sensors requests are simulated using another server. This server is in charge to send hundred
of requests to the VM in order to fill the database. Consequently, it is easy to vary the
different requests characteristics namely: \textbf{1)} The number request, to virtually
add/remove sensors \textbf{2)} The requests frequency.
add/remove sensors \textbf{2)} The requests interval.
* Evaluation [3 col]
** IoT/Network Consumption
@ -239,13 +239,17 @@ component, formatting, style, styling, insert
A last parameter can leverage server energy consumption namely sensors send frequency. In
addition to increasing the application accuracy, sensors send frequency increase network traffic
and database accesses.
and database accesses. Figure \ref{fig:sensorsFrequency} present the impact on the server energy
consumption of changing the send interval of 50 sensors to 1s, 10s and 30s. We can see that, the
more sensors send interval is low, the more server energy consumption peaks occurs. Therefore, it
leads to an increase in the server energy consumption.
#+BEGIN_EXPORT latex
\begin{figure}
\caption{Freq}
\centering
\includegraphics[scale=0.5]{plots/sendInterval-cloud.png}
\label{fig:sensorsFrequency}
\caption{Server energy consumption for 50 sensors sending request at different interval.}
\end{figure}
#+END_EXPORT
@ -472,7 +476,7 @@ component, formatting, style, styling, insert
data=data%>%mutate(vmSize=as.character(vmSize))
ggplot(data) + geom_bar(aes(x=vmSize,y=energy),stat="identity")+expand_limits(y=c(75,100))+ylab("Server Energy Consumption (W)")+
xlab("Simulation Time (s)")+scale_y_log10()
xlab("Experiment Time (s)")+scale_y_log10()
ggsave("plots/vmSizeBar-cloud.png",dpi=90,height=3,width=6)
@ -703,7 +707,7 @@ component, formatting, style, styling, insert
data=data%>%mutate(vmSize=paste0(vmSize," MB"))
data=data%>%group_by(vmSize)%>%mutate(avgEnergy=mean(energy))%>%ungroup()
p=ggplot(data,aes(x=time, y=energy)) + geom_line()+facet_wrap(~vmSize)+geom_hline(aes(yintercept=avgEnergy),color="Red",size=1.0)+expand_limits(y=c(0,40))+ylab("Server Energy Consumption (W)")+
xlab("Simulation Time (s)")
xlab("Experiment Time (s)")
p=applyTheme(p)
@ -728,7 +732,7 @@ component, formatting, style, styling, insert
data=data%>%group_by(nbSensors)%>%mutate(avgEnergy=mean(energy))%>%ungroup()
p=ggplot(data,aes(x=time, y=energy)) + geom_line()+facet_wrap(~nbSensors)+expand_limits(y=c(0,40))+ylab("Server Energy Consumption (W)")+
xlab("Simulation Time (s)")+geom_hline(aes(yintercept=avgEnergy),color="Red",size=1.0)
xlab("Experiment Time (s)")+geom_hline(aes(yintercept=avgEnergy),color="Red",size=1.0)
p=applyTheme(p)
ggsave("plots/sensorsNumber-cloud.png",dpi=90,height=3,width=6)
@ -804,11 +808,12 @@ component, formatting, style, styling, insert
data$sendInterval=fct_reorder(data$sendInterval,oldSendInterval)
data=data%>%group_by(sendInterval)%>%mutate(avgEnergy=mean(energy))%>%ungroup()
print(data)
p=ggplot(data,aes(x=time, y=energy)) + geom_line()+facet_wrap(~sendInterval)+expand_limits(y=c(0,40))+ylab("Server Energy Consumption (W)")+
xlab("Simulation Time (s)")+geom_hline(aes(yintercept=avgEnergy),color="Red",size=1.0)
xlab("Experiment Time (s)")+geom_hline(aes(yintercept=avgEnergy),color="Red",size=1.0)
p=applyTheme(p)
ggsave("plots/sendInterval-cloud.png",dpi=90,height=3,width=6)
ggsave("plots/sendInterval-cloud.png",dpi=120,height=3,width=6)
#+END_SRC
#+RESULTS:

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

After

Width:  |  Height:  |  Size: 42 KiB

Before After
Before After

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

After

Width:  |  Height:  |  Size: 45 KiB

Before After
Before After

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

After

Width:  |  Height:  |  Size: 30 KiB

Before After
Before After