Add linear regression
This commit is contained in:
commit
340299b7ac
6 changed files with 111 additions and 0 deletions
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
*.tex
|
8
data/polynomial.csv
Normal file
8
data/polynomial.csv
Normal file
|
@ -0,0 +1,8 @@
|
|||
x,y
|
||||
1,1
|
||||
2,3
|
||||
3,4
|
||||
4,4.5
|
||||
5,4.6
|
||||
6,4.65
|
||||
|
|
BIN
linear_regression/polynomial.gif
Normal file
BIN
linear_regression/polynomial.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 412 KiB |
33
linear_regression/polynomial.org
Normal file
33
linear_regression/polynomial.org
Normal file
|
@ -0,0 +1,33 @@
|
|||
#+TITLE: Gradient Decent Based Polynomial Regression
|
||||
#+AUTHOR: Loic Guegan
|
||||
|
||||
#+OPTIONS: toc:nil
|
||||
|
||||
#+LATEX_HEADER: \usepackage{fullpage}
|
||||
#+latex_header: \hypersetup{colorlinks=true,linkcolor=blue}
|
||||
|
||||
First, choose a polynomial function $h_w(x)$ according to the data complexity.
|
||||
In our case, we have:
|
||||
\begin{equation}
|
||||
h_w(x) = w_1 + w_2x + w_3x^2
|
||||
\end{equation}
|
||||
|
||||
Then, we should define a cost function. A common approach is to use the *Mean Square Error*
|
||||
cost function:
|
||||
\begin{equation}\label{eq:cost}
|
||||
J(w) = \frac{1}{2n} \sum_{i=0}^n (h_w(x^{(i)}) - \hat{y}^{(i)})^2
|
||||
\end{equation}
|
||||
|
||||
Note that in Equation \ref{eq:cost} we average by $2n$ and not $n$. This is because it get simplify
|
||||
while doing the partial derivatives as we will see below. This is a pure cosmetic approach which do
|
||||
not impact the gradient decent (see [[https://math.stackexchange.com/questions/884887/why-divide-by-2m][here]] for more informations). The next step is to $min_w J(w)$
|
||||
for each weight $w_i$ (performing the gradient decent). Thus we compute each partial derivatives:
|
||||
\begin{align}
|
||||
\frac{\partial J(w)}{\partial w_1}&=\frac{\partial J(w)}{\partial h_w(x)}\frac{\partial h_w(x)}{\partial w_1}\nonumber\\
|
||||
&= \frac{1}{n} \sum_{i=0}^n (h_w(x^{(i)}) - \hat{y}^{(i)})\\
|
||||
\text{similarly:}\nonumber\\
|
||||
\frac{\partial J(w)}{\partial w_2}&= \frac{1}{n} \sum_{i=0}^n x(h_w(x^{(i)}) - \hat{y}^{(i)})\\
|
||||
\frac{\partial J(w)}{\partial w_3}&= \frac{1}{n} \sum_{i=0}^n x^2(h_w(x^{(i)}) - \hat{y}^{(i)})
|
||||
\end{align}
|
||||
|
||||
|
BIN
linear_regression/polynomial.pdf
Normal file
BIN
linear_regression/polynomial.pdf
Normal file
Binary file not shown.
69
linear_regression/polynomial.py
Executable file
69
linear_regression/polynomial.py
Executable file
|
@ -0,0 +1,69 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.animation import FuncAnimation
|
||||
import numpy as np
|
||||
|
||||
# Load the data
|
||||
csv="../data/polynomial.csv"
|
||||
data=pd.read_csv(csv)
|
||||
x=np.array(data["x"])
|
||||
y=np.array(data["y"])
|
||||
|
||||
# Define the weight
|
||||
w1=w2=w3=10
|
||||
|
||||
# Define our model
|
||||
def h(x):
|
||||
return(w1+w2*x+w3*(x**2))
|
||||
|
||||
# Define all partial derivative
|
||||
def dh1():
|
||||
return(1/len(x)*np.sum(h(x)-y))
|
||||
def dh2():
|
||||
return(1/len(x)*np.sum((h(x)-y)*x))
|
||||
def dh3():
|
||||
return(1/len(x)*np.sum((h(x)-y)*(x**2)))
|
||||
|
||||
# Perform the gradient decent
|
||||
fig, ax = plt.subplots()
|
||||
frame=0 # Current frame (plot animation)
|
||||
alpha=0.005 # Proportion of the gradient to take into account
|
||||
accuracy=0.000001 # Accuracy of the decent
|
||||
done=False
|
||||
def decent(i):
|
||||
global w1,w2,w3,x,y,frame
|
||||
while True:
|
||||
w1_old=w1
|
||||
w1_new=w1-alpha*dh1()
|
||||
w2_old=w2
|
||||
w2_new=w2-alpha*dh2()
|
||||
w3_old=w3
|
||||
w3_new=w3-alpha*dh3()
|
||||
w1=w1_new
|
||||
w2=w2_new
|
||||
w3=w3_new
|
||||
|
||||
if abs(w1_new-w1_old) <= accuracy and abs(w2_new-w2_old) <= accuracy and abs(w2_new-w2_old) <= accuracy:
|
||||
done=True
|
||||
frame+=1
|
||||
if frame >=1000:
|
||||
frame=0
|
||||
ax.clear()
|
||||
ax.set_xlim([0, 7])
|
||||
ax.set_ylim([0, 5])
|
||||
ax.plot(x,y,"ro")
|
||||
ax.plot(x,h(x))
|
||||
break
|
||||
|
||||
def IsDone():
|
||||
global done
|
||||
i = 0
|
||||
while not done:
|
||||
i += 1
|
||||
yield i
|
||||
|
||||
anim=FuncAnimation(fig,decent,frames=IsDone,repeat=False)
|
||||
anim.save('polynomial.gif',dpi=80,writer="imagemagick")
|
||||
|
Loading…
Add table
Reference in a new issue