69 lines
1.5 KiB
Python
Executable file
69 lines
1.5 KiB
Python
Executable file
#!/usr/bin/env python
|
|
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
from matplotlib.animation import FuncAnimation
|
|
import numpy as np
|
|
|
|
# Load the data
|
|
csv="../data/polynomial.csv"
|
|
data=pd.read_csv(csv)
|
|
x=np.array(data["x"])
|
|
y=np.array(data["y"])
|
|
|
|
# Define the weight
|
|
w1=w2=w3=10
|
|
|
|
# Define our model
|
|
def h(x):
|
|
return(w1+w2*x+w3*(x**2))
|
|
|
|
# Define all partial derivative
|
|
def dh1():
|
|
return(1/len(x)*np.sum(h(x)-y))
|
|
def dh2():
|
|
return(1/len(x)*np.sum((h(x)-y)*x))
|
|
def dh3():
|
|
return(1/len(x)*np.sum((h(x)-y)*(x**2)))
|
|
|
|
# Perform the gradient decent
|
|
fig, ax = plt.subplots()
|
|
frame=0 # Current frame (plot animation)
|
|
alpha=0.005 # Proportion of the gradient to take into account
|
|
accuracy=0.000001 # Accuracy of the decent
|
|
done=False
|
|
def decent(i):
|
|
global w1,w2,w3,x,y,frame
|
|
while True:
|
|
w1_old=w1
|
|
w1_new=w1-alpha*dh1()
|
|
w2_old=w2
|
|
w2_new=w2-alpha*dh2()
|
|
w3_old=w3
|
|
w3_new=w3-alpha*dh3()
|
|
w1=w1_new
|
|
w2=w2_new
|
|
w3=w3_new
|
|
|
|
if abs(w1_new-w1_old) <= accuracy and abs(w2_new-w2_old) <= accuracy and abs(w2_new-w2_old) <= accuracy:
|
|
done=True
|
|
frame+=1
|
|
if frame >=1000:
|
|
frame=0
|
|
ax.clear()
|
|
ax.set_xlim([0, 7])
|
|
ax.set_ylim([0, 5])
|
|
ax.plot(x,y,"ro")
|
|
ax.plot(x,h(x))
|
|
break
|
|
|
|
def IsDone():
|
|
global done
|
|
i = 0
|
|
while not done:
|
|
i += 1
|
|
yield i
|
|
|
|
anim=FuncAnimation(fig,decent,frames=IsDone,repeat=False)
|
|
anim.save('polynomial.gif',dpi=80,writer="imagemagick")
|
|
|