Add linear regression
This commit is contained in:
commit
340299b7ac
6 changed files with 111 additions and 0 deletions
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
|
@ -0,0 +1 @@
|
||||||
|
*.tex
|
8
data/polynomial.csv
Normal file
8
data/polynomial.csv
Normal file
|
@ -0,0 +1,8 @@
|
||||||
|
x,y
|
||||||
|
1,1
|
||||||
|
2,3
|
||||||
|
3,4
|
||||||
|
4,4.5
|
||||||
|
5,4.6
|
||||||
|
6,4.65
|
||||||
|
|
|
BIN
linear_regression/polynomial.gif
Normal file
BIN
linear_regression/polynomial.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 412 KiB |
33
linear_regression/polynomial.org
Normal file
33
linear_regression/polynomial.org
Normal file
|
@ -0,0 +1,33 @@
|
||||||
|
#+TITLE: Gradient Decent Based Polynomial Regression
|
||||||
|
#+AUTHOR: Loic Guegan
|
||||||
|
|
||||||
|
#+OPTIONS: toc:nil
|
||||||
|
|
||||||
|
#+LATEX_HEADER: \usepackage{fullpage}
|
||||||
|
#+latex_header: \hypersetup{colorlinks=true,linkcolor=blue}
|
||||||
|
|
||||||
|
First, choose a polynomial function $h_w(x)$ according to the data complexity.
|
||||||
|
In our case, we have:
|
||||||
|
\begin{equation}
|
||||||
|
h_w(x) = w_1 + w_2x + w_3x^2
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
Then, we should define a cost function. A common approach is to use the *Mean Square Error*
|
||||||
|
cost function:
|
||||||
|
\begin{equation}\label{eq:cost}
|
||||||
|
J(w) = \frac{1}{2n} \sum_{i=0}^n (h_w(x^{(i)}) - \hat{y}^{(i)})^2
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
Note that in Equation \ref{eq:cost} we average by $2n$ and not $n$. This is because it get simplify
|
||||||
|
while doing the partial derivatives as we will see below. This is a pure cosmetic approach which do
|
||||||
|
not impact the gradient decent (see [[https://math.stackexchange.com/questions/884887/why-divide-by-2m][here]] for more informations). The next step is to $min_w J(w)$
|
||||||
|
for each weight $w_i$ (performing the gradient decent). Thus we compute each partial derivatives:
|
||||||
|
\begin{align}
|
||||||
|
\frac{\partial J(w)}{\partial w_1}&=\frac{\partial J(w)}{\partial h_w(x)}\frac{\partial h_w(x)}{\partial w_1}\nonumber\\
|
||||||
|
&= \frac{1}{n} \sum_{i=0}^n (h_w(x^{(i)}) - \hat{y}^{(i)})\\
|
||||||
|
\text{similarly:}\nonumber\\
|
||||||
|
\frac{\partial J(w)}{\partial w_2}&= \frac{1}{n} \sum_{i=0}^n x(h_w(x^{(i)}) - \hat{y}^{(i)})\\
|
||||||
|
\frac{\partial J(w)}{\partial w_3}&= \frac{1}{n} \sum_{i=0}^n x^2(h_w(x^{(i)}) - \hat{y}^{(i)})
|
||||||
|
\end{align}
|
||||||
|
|
||||||
|
|
BIN
linear_regression/polynomial.pdf
Normal file
BIN
linear_regression/polynomial.pdf
Normal file
Binary file not shown.
69
linear_regression/polynomial.py
Executable file
69
linear_regression/polynomial.py
Executable file
|
@ -0,0 +1,69 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from matplotlib.animation import FuncAnimation
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# Load the data
|
||||||
|
csv="../data/polynomial.csv"
|
||||||
|
data=pd.read_csv(csv)
|
||||||
|
x=np.array(data["x"])
|
||||||
|
y=np.array(data["y"])
|
||||||
|
|
||||||
|
# Define the weight
|
||||||
|
w1=w2=w3=10
|
||||||
|
|
||||||
|
# Define our model
|
||||||
|
def h(x):
|
||||||
|
return(w1+w2*x+w3*(x**2))
|
||||||
|
|
||||||
|
# Define all partial derivative
|
||||||
|
def dh1():
|
||||||
|
return(1/len(x)*np.sum(h(x)-y))
|
||||||
|
def dh2():
|
||||||
|
return(1/len(x)*np.sum((h(x)-y)*x))
|
||||||
|
def dh3():
|
||||||
|
return(1/len(x)*np.sum((h(x)-y)*(x**2)))
|
||||||
|
|
||||||
|
# Perform the gradient decent
|
||||||
|
fig, ax = plt.subplots()
|
||||||
|
frame=0 # Current frame (plot animation)
|
||||||
|
alpha=0.005 # Proportion of the gradient to take into account
|
||||||
|
accuracy=0.000001 # Accuracy of the decent
|
||||||
|
done=False
|
||||||
|
def decent(i):
|
||||||
|
global w1,w2,w3,x,y,frame
|
||||||
|
while True:
|
||||||
|
w1_old=w1
|
||||||
|
w1_new=w1-alpha*dh1()
|
||||||
|
w2_old=w2
|
||||||
|
w2_new=w2-alpha*dh2()
|
||||||
|
w3_old=w3
|
||||||
|
w3_new=w3-alpha*dh3()
|
||||||
|
w1=w1_new
|
||||||
|
w2=w2_new
|
||||||
|
w3=w3_new
|
||||||
|
|
||||||
|
if abs(w1_new-w1_old) <= accuracy and abs(w2_new-w2_old) <= accuracy and abs(w2_new-w2_old) <= accuracy:
|
||||||
|
done=True
|
||||||
|
frame+=1
|
||||||
|
if frame >=1000:
|
||||||
|
frame=0
|
||||||
|
ax.clear()
|
||||||
|
ax.set_xlim([0, 7])
|
||||||
|
ax.set_ylim([0, 5])
|
||||||
|
ax.plot(x,y,"ro")
|
||||||
|
ax.plot(x,h(x))
|
||||||
|
break
|
||||||
|
|
||||||
|
def IsDone():
|
||||||
|
global done
|
||||||
|
i = 0
|
||||||
|
while not done:
|
||||||
|
i += 1
|
||||||
|
yield i
|
||||||
|
|
||||||
|
anim=FuncAnimation(fig,decent,frames=IsDone,repeat=False)
|
||||||
|
anim.save('polynomial.gif',dpi=80,writer="imagemagick")
|
||||||
|
|
Loading…
Add table
Reference in a new issue