222 lines
No EOL
6.8 KiB
R
Executable file
222 lines
No EOL
6.8 KiB
R
Executable file
# Librairies nécessaire : plotrix
|
|
|
|
source(paste(dirname(sys.frame(1)$ofile),"/intersectionCercles.R",sep=""))
|
|
library("plotrix")
|
|
|
|
##############################
|
|
# Retourne la position estimée pour les différentes distance
|
|
# gwX = une matrice des coordonnées en X de chaque gateway (attention à l'odre avec gwY) exemple :
|
|
# gwX1,gwX2,gwX3
|
|
# gwY = une matrice des coordonnées en Y de chaque gateway (attention à l'odre avec gwX)
|
|
# distances = une matrice, exemple pour trois gateway avec 4 points à trouvées :
|
|
#
|
|
# d1gw1,d2gw1,d3gw1,d4gw1
|
|
# d1gw2,d2gw2,d3gw2,d4gw2
|
|
# d1gw3,d2gw3,d3gw3,d4gw3
|
|
#
|
|
# stepByStep = si a TRUE alors affiche la multilatération pour chaque points
|
|
# precisionPlot = nombre d'unité en X et en Y lors de l'affichage de la multilatération pour chaque points
|
|
##############################
|
|
multilateration=function(gwX,gwY,distances,stepByStep=FALSE,precisionPlot=80){
|
|
|
|
# Check parameters
|
|
if(!is.vector(gwX)){
|
|
stop("gwX is not a vector")
|
|
}
|
|
else if(!is.vector(gwY)){
|
|
stop("gwY is not a vector")
|
|
}
|
|
else if(!is.matrix(distances)){
|
|
stop("distances is not a matrix")
|
|
}
|
|
else if(length(gwX)!=length(gwY)){
|
|
stop("gwX and gwY haven't the same length")
|
|
}
|
|
else if(NROW(distances)!= length(gwX)){
|
|
stop("Number of rows of distances have not the same length of the gwX and gwY")
|
|
}
|
|
|
|
# Init convenience variables
|
|
nbGw=length(gwX);
|
|
nbDistances=NCOL(distances)
|
|
|
|
# Get the middle point of a segment
|
|
getMiddleOfSegment=function(x1,y1,x2,y2){
|
|
x=(x1+x2)/2;
|
|
y=(y1+y2)/2;
|
|
return(c(x,y));
|
|
}
|
|
|
|
# Get line equation from two of his points y=ax+b
|
|
getLineEquation=function(x1,y1,x2,y2){
|
|
eq=NULL;
|
|
if(x1!=x2){
|
|
a=(y1-y2)/(x1-x2);
|
|
b=y1-a*x1;
|
|
eq=c(a,b);
|
|
}
|
|
return(eq);
|
|
}
|
|
|
|
# Get line equation of 2 circles intersections points
|
|
getIntersectionLineEquation=function(circlesIntersections){
|
|
if(NROW(circlesIntersections)>1){
|
|
lineEquation=getLineEquation(
|
|
circlesIntersections[1,1],circlesIntersections[1,2],
|
|
circlesIntersections[2,1],circlesIntersections[2,2]);
|
|
if(is.null(lineEquation)){
|
|
return(circlesIntersections[1,1]);
|
|
}
|
|
return(lineEquation);
|
|
}
|
|
return(NULL);
|
|
}
|
|
|
|
# Build solution for each distances
|
|
sol=NULL;
|
|
for(i in 1:nbDistances){
|
|
linearLines=NULL;
|
|
xLines=NULL;
|
|
currentSol=NULL;
|
|
circlesIntersections=NULL;
|
|
|
|
# Build lines equation for linearLines and xLines
|
|
for(j in 1:(nbGw-1)){
|
|
mainGw=c(gwX[j],gwY[j]);
|
|
for(k in (j+1):nbGw){
|
|
slaveGw=c(gwX[k],gwY[k])
|
|
currentCirclesIntersections=getIntersection(mainGw[1],mainGw[2],distances[j,i],slaveGw[1],slaveGw[2],distances[k,i]);
|
|
circlesIntersections=rbind(circlesIntersections,currentCirclesIntersections);
|
|
lineEquation=getIntersectionLineEquation(currentCirclesIntersections)
|
|
if(length(lineEquation)==1){
|
|
xLines=rbind(xLines,lineEquation)
|
|
}
|
|
else{
|
|
linearLines=rbind(linearLines,lineEquation)
|
|
}
|
|
}
|
|
}
|
|
|
|
# Build lines intersections
|
|
intersections=NULL;
|
|
if(NROW(linearLines)>0||length(xLines)>0){
|
|
# Get intersections with xLines
|
|
sapply(xLines,function(x){
|
|
if(NROW(linearLines)>0){
|
|
apply(linearLines,1,function(eq){
|
|
intersections<<-rbind(intersections,c(x,eq[1]*x+eq[2]))
|
|
});
|
|
}
|
|
|
|
});
|
|
|
|
# Get linearLines intersections
|
|
if(NROW(linearLines)>1){
|
|
for(j in 1:(NROW(linearLines)-1)){
|
|
mainLL=c(linearLines[j,1],linearLines[j,2]);
|
|
for(k in (j+1):(NROW(linearLines))){
|
|
slaveLL=c(linearLines[k,1],linearLines[k,2]);
|
|
toSolve=matrix(c(-mainLL[1],-slaveLL[1],1,1), ncol=2,nrow=2);
|
|
tryCatch({
|
|
solution=solve(toSolve,c(mainLL[2],slaveLL[2]))
|
|
intersections=rbind(intersections,solution)
|
|
},error=function(error){});
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
# Build solution, if we have intersections
|
|
if(NROW(intersections)>0){
|
|
currentSol=c(mean(intersections[,1]),mean(intersections[,2]));
|
|
sol=cbind(sol,currentSol);
|
|
}
|
|
# If we don't have intersections (middle of segment)
|
|
else{
|
|
if(NROW(linearLines)>0||length(xLines)>0){
|
|
currentSol=getMiddleOfSegment(
|
|
circlesIntersections[1,1],circlesIntersections[1,2],
|
|
circlesIntersections[2,1],circlesIntersections[2,2]
|
|
);
|
|
# sol=cbind(sol,currentSol);
|
|
}
|
|
}
|
|
|
|
# If we plot current solution
|
|
if(stepByStep){
|
|
# Plot gateways
|
|
plot(gwX,gwY,asp=1,xlim=c(-precisionPlot,precisionPlot),ylim=c(-precisionPlot,precisionPlot),pch=17, col="orange")
|
|
# Plot circles
|
|
for(j in 1:nbGw){
|
|
draw.circle(gwX[j],gwY[j],distances[j,i],lwd=0.5);
|
|
}
|
|
# Plot circles intersections
|
|
if(!is.null(circlesIntersections)){
|
|
apply(circlesIntersections,1,function(row){
|
|
lines(row[1],row[2],type="p",col="blue",pch=20)
|
|
});
|
|
}
|
|
if(!is.null(intersections)){
|
|
apply(intersections,1,function(row){
|
|
lines(row[1],row[2],type="p",col="black",pch=20)
|
|
});
|
|
}
|
|
if(!is.null(linearLines)){
|
|
apply(linearLines,1,function(row){
|
|
abline(row[2],row[1]);
|
|
});
|
|
}
|
|
|
|
if(!is.null(xLines)){
|
|
sapply(xLines,function(x){
|
|
abline(v=x);
|
|
});
|
|
}
|
|
if(!is.null(sol)){
|
|
lines(sol[1],sol[2],type="p",col="red", pch=16)
|
|
}
|
|
|
|
readline(prompt = "Press enter for next step...")
|
|
}
|
|
|
|
}
|
|
return(sol);
|
|
}
|
|
|
|
##############################
|
|
# Multilateration avec optimisation de la taille des cercles (prendre le plus petit rayon possible)
|
|
# radiusStep = pas de réduction de la taille du rayon
|
|
##############################
|
|
optimizeRadius=function(gwX,gwY,distances,stepByStep=FALSE,precisionPlot=80, radiusStep=1,zeroForNull=FALSE){
|
|
sol=NULL;
|
|
for(i in 1:NCOL(distances)){
|
|
factor=0
|
|
curDistances=as.matrix(distances[,i])-factor
|
|
# Try to find solution without optimisation (factor=0)
|
|
estimated=multilateration(gwX,gwY,curDistances,stepByStep=stepByStep,precisionPlot=precisionPlot)
|
|
# Repeat multilateration until radius = 0
|
|
while(sum(curDistances<=0)!=NROW(gwX)){
|
|
factor=factor+radiusStep
|
|
curDistances=curDistances-factor # Reduce circles radius
|
|
curDistances[curDistances<0]<-0 # Put zero in negative radius
|
|
e=multilateration(gwX,gwY,curDistances,stepByStep=stepByStep,precisionPlot=precisionPlot) # Temporary solution
|
|
if(!is.null(e)){ # A better solution is found
|
|
estimated=e
|
|
}
|
|
else if(!is.null(estimated)){ # No other solution is possible
|
|
break;
|
|
}
|
|
}
|
|
if(zeroForNull && is.null(estimated)){
|
|
sol=cbind(sol,c(0,0))
|
|
|
|
}
|
|
else{
|
|
if(!is.null(estimated)){
|
|
sol=cbind(sol,estimated)
|
|
}
|
|
}
|
|
}
|
|
return(sol)
|
|
} |