science-notes/source/statistics/metrics.rst
2023-10-14 19:21:10 +02:00

71 lines
2.1 KiB
ReStructuredText

Metrics
==================
* **Expected value/Espérance**: Noted :math:`\mathbb{E}[X]`, is a **theorical value**. For example, when playing coin
flipping, the expected value for getting heads or tails is 0.5.
Variance
------------------
Variance can be seen as the expected squared deviation from the expected value of a random variable :math:`X`.
.. math::
\mathbb{V}[X]=\mathbb{E}[X-\mathbb{E}[X]]^2=\frac{\sum_{i=1}^n (x_i - \mathbb{E}[X])^2}{n}=\mathrm{Cov}(X,X)
Covariance
------------------
Covariance is a way to quantify the relationship between two random variables :math:`X` and
:math:`Y` (`source <https://www.youtube.com/watch?v=qtaqvPAeEJY>`_). Covariance **DOES NOT**
quantify how strong this correlation is! If covariance is:
Positive
For large values of :math:`X`, :math:`Y` is also taking large values
Negative
For large values of :math:`X`, :math:`Y` is also taking low values
Null
No correlation
.. math::
\mathrm{Cov}(X,Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\frac{\sum_{i=1}^n (x_i - \mathbb{E}[X])(y_i - \mathbb{E}[Y])}{n}
Standard deviation
-----------------------
Standard deviation provides a way to interprete the variance using the unit of :math:`X`.
.. math::
\sigma=\sqrt{\mathbb{V}[X]}
Standard Error of the Mean
-----------------------------
Standard Error of the Mean (SEM) quantifies the error that is potentially made when computing the mean.
.. math::
\mathrm{SEM}=\sigma_X^{-}=\sqrt{\frac{\mathbb{V}[X]}{n}}=\frac{\sigma}{\sqrt{n}}
Here is how to interpret it.
If :math:`n=1`, the error is at most :math:`\sqrt{\mathbb{V}[X]}=\sigma_X` which is the standard deviation or :math:`X`.
The more :math:`n` increases, the lower the error becomes.
More infos in `this video <https://www.youtube.com/watch?v=BwYj69LAQOI>`_.
If it is still unclear, see the following R code:
.. literalinclude:: code/sem.R
:language: R
Output example:
.. code-block:: console
----- Experiment 1 -----
Means SD: 1.22
SEM 1.26
----- Experiment 2 -----
Means SD: 1.26
SEM 1.26
----- Experiment 3 -----
Means SD: 1.27
SEM 1.26