X=fft(c(1,2,3,4)) # Get the DFT of our signal N=4 # Signal size xkn=function(k,n){X[k+1]*exp(2i*pi*(k/N)*n)} # Perform the inverse DFT: x0=1/N*(xkn(0,0)+xkn(1,0)+xkn(2,0)+xkn(3,0)) x1=1/N*(xkn(0,1)+xkn(1,1)+xkn(2,1)+xkn(3,1)) x2=1/N*(xkn(0,2)+xkn(1,2)+xkn(2,2)+xkn(3,2)) x3=1/N*(xkn(0,3)+xkn(1,3)+xkn(2,3)+xkn(3,3)) x=Re(c(x0,x1,x2,x3)) # Take the real stopifnot(any(Im(x)==0)) # Also see how all imaginary parts are 0!