Discrete Fourier Transform ---------------------------- Discrete Fourier Transform (DFT) is used to perform the Fourier transform of a discrete signal. The DFT of a discrete complex/real signal :math:`\vec{x}=\{x_0,...,x_{N-1}\}` is: .. math:: X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi\frac{k}{N}n} .. note:: In this case, :math:`\frac{k}{N}` can be seen as the frequency of the wave used to determined the :math:`k^{th}` frequency :math:`X_k`. See `here `__ for more infos. One important property of the DFT is its **periodicity**. The DFT has a period of :math:`N`. Hence, all :math:`X_k` such that :math:`k > \frac{N}{2}` corresponds to negative frequencies: .. math:: X_{N-1} &= \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi\frac{N-1}{N}n} &= \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi (n - \frac{n}{N})} &= \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi n} \cdot e^{j2\pi\frac{n}{N}} &= \sum_{n=0}^{N-1} x_n \cdot e^{j2\pi\frac{n}{N}} \mathrm{~~as~~} \forall n: e^{-j2\pi n} = 1 &=X_{-1} This explanation is extracted from `here `__. Note that, the frequency corresponding to :math:`\frac{N}{2}` is called `Nyquist_rate `__. As frequencies above :math:`\frac{N}{2}` cannot be captured by the signal due to the `Nyquist-Shannon `__, a reasoning phenomenon starts to arise. This leads to a capturing effect of the negative frequencies. See `here `__ for a visual explanation. Inverse DFT =========== The inverse DFT of a discrete complex/real signal :math:`\vec{x}={x_0,...,x_{N-1}}` is: .. math:: x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k \cdot e^{j2\pi\frac{k}{N}n} .. note:: If the signal is *real*, all the complex terms of the inverse DFT are suppose to cancel out. In depth example ================= Let's take a discrete signal :math:`\vec{x}=\{1,2,3,4\}`, sampled at a frequency :math:`f_s=10 Hz`. .. literalinclude:: code/dft.R :language: R Now let's do its inverse DFT: .. literalinclude:: code/idft.R :language: R Understanding how imaginary parts cancel out in during the inverse DFT is important. The periodicity of the DFT plays a key role for that. For our signal :math:`\vec{x}` we have: .. math:: \vec{X}=\{10+0j, -2+2j, -2+0j, -2-2j\} See how :math:`X_1 = \overline{X_3}`. When computing :math:`x_n`, :math:`X_1` becomes: .. math:: X_1 \cdot e^{j2\pi\frac{1}{N}n} &= ({\color{blue}-2}+{\color{red}2j}) \cdot (cos(2\pi\frac{1}{4}n)+j\cdot sin(2\pi\frac{1}{4}n)) &= {\color{blue}-2 \cdot cos(2\pi\frac{1}{4}n) -2j \cdot sin(2\pi\frac{1}{4}n)} + {\color{red}2j \cdot cos(2\pi\frac{1}{4}n) -2 \cdot sin(2\pi\frac{1}{4}n)} In turn, :math:`X_3` becomes: .. math:: X_3 \cdot e^{j2\pi\frac{3}{N}n} &= ({\color{blue}-2}{\color{red}-2j}) \cdot (cos(2\pi\frac{3}{4}n)+j\cdot sin(2\pi\frac{3}{4}n)) &= {\color{blue}-2 \cdot cos(2\pi\frac{3}{4}n) -2j \cdot sin(2\pi\frac{3}{4}n)} {\color{red}- 2j \cdot cos(2\pi\frac{3}{4}n) + 2 \cdot sin(2\pi\frac{3}{4}n)} Notice that: .. math:: \forall n:\, & cos(2\pi\frac{1}{4}n) = 0 & cos(2\pi\frac{3}{4}n) = 0 & sin(2\pi\frac{1}{4}n) = j & sin(2\pi\frac{3}{4}n) = -j In particular, see how the symmetry of the DFT leads to opposite values. In this case, :math:`cos` waves are all 0. But opposite values would arise for other :math:`\vec{X}`. Plugin in these new values whenever :math:`j` shows up gives the following: .. math:: X_1 \cdot e^{j2\pi\frac{1}{N}n} &= -2 \cdot cos(2\pi\frac{1}{4}n) + (-2j \cdot j) + (2j \cdot 0) -2 \cdot sin(2\pi\frac{1}{4}n) &= -2 \cdot cos(2\pi\frac{1}{4}n) + 2 -2 \cdot sin(2\pi\frac{1}{4}n) X_3 \cdot e^{j2\pi\frac{3}{N}n} &= -2 \cdot cos(2\pi\frac{3}{4}n) +(-2j \cdot -j) +(- 2j \cdot 0) + 2 \cdot sin(2\pi\frac{3}{4}n) &= -2 \cdot cos(2\pi\frac{3}{4}n) - 2 + 2 \cdot sin(2\pi\frac{3}{4}n) As these two terms get summed during the inverse DFT gives: .. math:: X_1 \cdot e^{j2\pi\frac{1}{N}n} + X_3 \cdot e^{j2\pi\frac{3}{N}n} = -2 \cdot cos(2\pi\frac{1}{4}n) \cancel{+ 2} -2 \cdot sin(2\pi\frac{1}{4}n)\\ -2 \cdot cos(2\pi\frac{3}{4}n) \cancel{- 2} + 2 \cdot sin(2\pi\frac{3}{4}n) An you are left with sum of real signals.