Introduction ================== Metrics ---------------- * **Expected value/Espérance**: Noted :math:`\mathbb{E}[X]`, is a **theorical value**. For example, when playing coin flipping, the expected value for getting heads or tails is 0.5. Variance ^^^^^^^^^^^^^^ Variance can be seen as the expected squared deviation from the expected value of a random variable :math:`X`. .. math:: \mathbb{V}[X]=\mathbb{E}[X-\mathbb{E}[X]]^2=\frac{\sum_{i=1}^n (x_i - \mathbb{E}[X])^2}{n}=\mathrm{Cov}(X,X) Covariance ^^^^^^^^^^^^^^ Covariance is a way to quantify the relationship between two random variables :math:`X` and :math:`Y` (`source <https://www.youtube.com/watch?v=qtaqvPAeEJY>`_). Covariance **DOES NOT** quantify how strong this correlation is! If covariance is: Positive For large values of :math:`X`, :math:`Y` is also taking large values Negative For large values of :math:`X`, :math:`Y` is also taking low values Null No correlation .. math:: \mathrm{Cov}(X,Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\frac{\sum_{i=1}^n (x_i - \mathbb{E}[X])(y_i - \mathbb{E}[Y])}{n}