Minor changes
This commit is contained in:
parent
a666713b5a
commit
d09590f144
4 changed files with 13 additions and 23 deletions
|
@ -6,7 +6,7 @@
|
|||
# -- Project information -----------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information
|
||||
|
||||
project = 'ScienceNotes'
|
||||
project = 'Science Notes'
|
||||
copyright = '2023, Loïc Guégan'
|
||||
author = 'Loïc Guégan'
|
||||
release = '0.1'
|
||||
|
|
|
@ -8,9 +8,13 @@ Welcome to ScienceNotes's documentation!
|
|||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:caption: Contents:
|
||||
:numbered:
|
||||
:caption: Statistics
|
||||
|
||||
statistics/index
|
||||
statistics/notations
|
||||
statistics/metrics
|
||||
statistics/bessel_correction
|
||||
statistics/bayes_theorem
|
||||
|
||||
|
||||
Indices and tables
|
||||
|
|
|
@ -1,13 +0,0 @@
|
|||
Statistics
|
||||
=========================
|
||||
|
||||
.. toctree::
|
||||
:numbered:
|
||||
:maxdepth: 2
|
||||
|
||||
notations
|
||||
metrics
|
||||
bessel_correction
|
||||
bayes_theorem
|
||||
|
||||
Statistics notes.
|
|
@ -12,7 +12,7 @@ occurring we have:
|
|||
.. math::
|
||||
\mathbb{E}[X]=x_1p_1+x_2p_2+\cdots+x_np_n
|
||||
|
||||
When working with a sample, the following is an unbiased estimator of the expected value (`source <https://stats.stackexchange.com/questions/518084/whats-the-difference-between-the-mean-and-expected-value-of-a-normal-distributi>`_):
|
||||
When working with a sample, the following is an unbiased estimator of the expected value (`source <https://stats.stackexchange.com/questions/518084/whats-the-difference-between-the-mean-and-expected-value-of-a-normal-distributi>`__):
|
||||
|
||||
.. math::
|
||||
\overline{x}=\frac{\sum_{i=1}^n x_i}{n}
|
||||
|
@ -36,7 +36,7 @@ Covariance
|
|||
------------------
|
||||
|
||||
Covariance is a way to quantify the relationship between two random variables :math:`X` and
|
||||
:math:`Y` (`source <https://www.youtube.com/watch?v=qtaqvPAeEJY>`_). Covariance **DOES NOT**
|
||||
:math:`Y` (`source <https://www.youtube.com/watch?v=qtaqvPAeEJY>`__). Covariance **DOES NOT**
|
||||
quantify how strong this correlation is! If covariance is:
|
||||
|
||||
Positive
|
||||
|
@ -72,6 +72,10 @@ Standard Error of the Mean (SEM) quantifies the error that is potentially made w
|
|||
.. math::
|
||||
\mathrm{SEM}=\sigma_X^{-}=\sqrt{\frac{\mathbb{V}[X]}{n}}=\frac{\sigma}{\sqrt{n}}
|
||||
|
||||
When working with a sample of :math:`n` individuals, an estimator of the SEM is:
|
||||
|
||||
.. math::
|
||||
s_{\overline{x}}=\frac{s}{\sqrt{n}}
|
||||
|
||||
Here is how to interpret it.
|
||||
If :math:`n=1`, the error is at most :math:`\sqrt{\mathbb{V}[X]}=\sigma_X` which is the standard deviation or :math:`X`.
|
||||
|
@ -96,11 +100,6 @@ Output example:
|
|||
----- Experiment 3 -----
|
||||
Means SD: 1.27
|
||||
SEM 1.26
|
||||
|
||||
When working with a sample of :math:`n` individuals, an estimator of the SEM is:
|
||||
|
||||
.. math::
|
||||
s_{\overline{x}}=\frac{s}{\sqrt{n}}
|
||||
|
||||
Degree of Freedom
|
||||
--------------------
|
||||
|
|
Loading…
Add table
Reference in a new issue