Minor changes

This commit is contained in:
Loic Guegan 2023-10-15 19:26:33 +02:00
parent a666713b5a
commit d09590f144
4 changed files with 13 additions and 23 deletions

View file

@ -6,7 +6,7 @@
# -- Project information -----------------------------------------------------
# https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information
project = 'ScienceNotes'
project = 'Science Notes'
copyright = '2023, Loïc Guégan'
author = 'Loïc Guégan'
release = '0.1'

View file

@ -8,9 +8,13 @@ Welcome to ScienceNotes's documentation!
.. toctree::
:maxdepth: 2
:caption: Contents:
:numbered:
:caption: Statistics
statistics/index
statistics/notations
statistics/metrics
statistics/bessel_correction
statistics/bayes_theorem
Indices and tables

View file

@ -1,13 +0,0 @@
Statistics
=========================
.. toctree::
:numbered:
:maxdepth: 2
notations
metrics
bessel_correction
bayes_theorem
Statistics notes.

View file

@ -12,7 +12,7 @@ occurring we have:
.. math::
\mathbb{E}[X]=x_1p_1+x_2p_2+\cdots+x_np_n
When working with a sample, the following is an unbiased estimator of the expected value (`source <https://stats.stackexchange.com/questions/518084/whats-the-difference-between-the-mean-and-expected-value-of-a-normal-distributi>`_):
When working with a sample, the following is an unbiased estimator of the expected value (`source <https://stats.stackexchange.com/questions/518084/whats-the-difference-between-the-mean-and-expected-value-of-a-normal-distributi>`__):
.. math::
\overline{x}=\frac{\sum_{i=1}^n x_i}{n}
@ -36,7 +36,7 @@ Covariance
------------------
Covariance is a way to quantify the relationship between two random variables :math:`X` and
:math:`Y` (`source <https://www.youtube.com/watch?v=qtaqvPAeEJY>`_). Covariance **DOES NOT**
:math:`Y` (`source <https://www.youtube.com/watch?v=qtaqvPAeEJY>`__). Covariance **DOES NOT**
quantify how strong this correlation is! If covariance is:
Positive
@ -72,6 +72,10 @@ Standard Error of the Mean (SEM) quantifies the error that is potentially made w
.. math::
\mathrm{SEM}=\sigma_X^{-}=\sqrt{\frac{\mathbb{V}[X]}{n}}=\frac{\sigma}{\sqrt{n}}
When working with a sample of :math:`n` individuals, an estimator of the SEM is:
.. math::
s_{\overline{x}}=\frac{s}{\sqrt{n}}
Here is how to interpret it.
If :math:`n=1`, the error is at most :math:`\sqrt{\mathbb{V}[X]}=\sigma_X` which is the standard deviation or :math:`X`.
@ -96,11 +100,6 @@ Output example:
----- Experiment 3 -----
Means SD: 1.27
SEM 1.26
When working with a sample of :math:`n` individuals, an estimator of the SEM is:
.. math::
s_{\overline{x}}=\frac{s}{\sqrt{n}}
Degree of Freedom
--------------------