diff --git a/source/signal_processing/dft.rst b/source/signal_processing/dft.rst index 7e6107a..59df92c 100644 --- a/source/signal_processing/dft.rst +++ b/source/signal_processing/dft.rst @@ -2,7 +2,7 @@ Discrete Fourier Transform ---------------------------- Discrete Fourier Transform (DFT) is used to perform the Fourier transform of a discrete signal. -The DFT of a discrete complex/real signal :math:`\vec{x}={x_0,...,x_{N-1}}` is: +The DFT of a discrete complex/real signal :math:`\vec{x}=\{x_0,...,x_{N-1}\}` is: .. math:: X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi\frac{k}{N}n} @@ -12,6 +12,25 @@ The DFT of a discrete complex/real signal :math:`\vec{x}={x_0,...,x_{N-1}}` is: the :math:`k^{th}` frequency :math:`X_k`. See `here `__ for more infos. +One important property of the DFT is its **periodicity**. The DFT has a period of :math:`N`. +Hence, all :math:`X_k` such that :math:`k > \frac{N}{2}` corresponds to negative frequencies: + +.. math:: + X_{N-1} &= \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi\frac{N-1}{N}n} + + &= \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi (n - \frac{n}{N})} + + &= \sum_{n=0}^{N-1} x_n \cdot e^{-j2\pi n} \cdot e^{j2\pi\frac{n}{N}} + + &= \sum_{n=0}^{N-1} x_n \cdot e^{j2\pi\frac{n}{N}} \mathrm{~~as~~} \forall n: e^{-j2\pi n} = 1 + + &=X_{-1} + +This explanation is extracted from `here `__. + +Inverse DFT +=========== + The inverse DFT of a discrete complex/real signal :math:`\vec{x}={x_0,...,x_{N-1}}` is: .. math:: @@ -23,3 +42,5 @@ The inverse DFT of a discrete complex/real signal :math:`\vec{x}={x_0,...,x_{N-1 In depth example ================= +Let's take a discrete signal :math:`\vec{x}=\{1,2,3,4\}`, sampled at a frequency :math:`f_s=10 Hz`. +