Minor changes
This commit is contained in:
parent
7d527bd111
commit
392d9f2c83
4 changed files with 34 additions and 5 deletions
4
source/statistics/bessel_correction.rst
Normal file
4
source/statistics/bessel_correction.rst
Normal file
|
@ -0,0 +1,4 @@
|
||||||
|
Bessel's Correction
|
||||||
|
-----------------------
|
||||||
|
|
||||||
|
TODO
|
|
@ -1,4 +0,0 @@
|
||||||
Degree of Freedom
|
|
||||||
===================
|
|
||||||
|
|
||||||
BAM
|
|
|
@ -6,6 +6,6 @@ Statistics
|
||||||
:maxdepth: 2
|
:maxdepth: 2
|
||||||
|
|
||||||
metrics
|
metrics
|
||||||
degree_of_freedom
|
bessel_correction
|
||||||
|
|
||||||
Statistics notes.
|
Statistics notes.
|
||||||
|
|
|
@ -70,3 +70,32 @@ Output example:
|
||||||
----- Experiment 3 -----
|
----- Experiment 3 -----
|
||||||
Means SD: 1.27
|
Means SD: 1.27
|
||||||
SEM 1.26
|
SEM 1.26
|
||||||
|
|
||||||
|
Degree of Freedom
|
||||||
|
--------------------
|
||||||
|
|
||||||
|
The degree of freedom is a quantity defined for a given computation.
|
||||||
|
It corresponds to the number of parameters that are allowed to vary in that computation.
|
||||||
|
In other words, how many varying values are contributing to the computation.
|
||||||
|
For example, when computing the mean of a random variable :math:`X={x_1,...,x_n}`, there are :math:`n` parameters
|
||||||
|
that are allowed to change in the following formula:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\overline{x}=\frac{\sum_{i=1}^n x_i}{n}
|
||||||
|
|
||||||
|
Thus, the degree of freedom in this computation is :math:`n`.
|
||||||
|
When computing the standard deviation of :math:`X`, we have:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\hat{\sigma}_x=\frac{\sum_{i=0}^n (x_i-\overline{x})^2}{n}
|
||||||
|
|
||||||
|
In this case, the degree of freedom is :math:`n-1`. As the mean is already known, only :math:`n-1`
|
||||||
|
of the :math:`x_i` are allowed to vary. By knowing :math:`n-1` of the :math:`x_i`, we can deduce the last
|
||||||
|
one as follow:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\overline{x}=\frac{(\sum_{i=1}^{n-1} x_i) + x_n}{n} \Longrightarrow x_n = n\overline{x} - (\sum_{i=1}^{n-1} x_i)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue