
Remote Snake API

May 10, 2019

1 General Description

• All transmissions will be based on TCP since:

– Packet length are not fixed (large variance depending on the snake size and food)

– Packet ordering is important (inverted request can compromise gameplay)

• All TCP streams from client to server will:

– Contain plain json data

– Be terminated by an "#EOF" line (in order for the server to detect the end of the client
request)

• All TCP stream from server to client will contains plain json data (connection will be closed
by the server so, there is no need of "#EOF").

2 Communications

2.1 Initialisation

1. Client sent:

{
"type": "new-game"

}
#EOF

2. Server can reply:

{
"type": "state",
"game-id": 1,
"game-over": false,
"snake": [[1,2],[1,3]],
"food": [[6,7]]

}

1



2.2 Gameplay

2.2.1 Change Direction

1. When client is playing a game, it can ask the server to change snake direction:

{
"type": "update",
"game-id": 1,
"direction": "left",

}
#EOF

2. Then, server can reply:

{
"type": "state",
"game-id": 1,
"game-over": false,
"snake": [[0,2],[1,2]],
"food": [[6,7]]

}

2.2.2 Refresh Screen

1. When no key are pressed (the snake is simply going forward). So, client can send:

{
"type": "update",
"game-id": 1,
"direction": null

}
#EOF

2. Server can reply:

{
"type": "state",
"game-id": 1,
"game-over": false,
"snake": [[1,2],[0,2]],
"food": [[6,7]]

}

2.2.3 End Game

• When game is over, server will send the following state message (switch "game-over" to true):

2



{
"type": "state",
"game-id": 1,
"game-over": true,
"snake": [[0,2],[1,2]],
"food": [[6,7]]

}

• No reply is expected from the client and server will be in charge to free local memory.

3


	General Description
	Communications
	Initialisation
	Gameplay
	Change Direction
	Refresh Screen
	End Game



