Debug cleaning

This commit is contained in:
Loic Guegan 2021-10-05 09:26:35 +02:00
parent 10dd12367f
commit edfcd2456d
4 changed files with 77 additions and 29 deletions

View file

@ -34,7 +34,7 @@
<br /><br /><br />
<h3>Projectile Motion</h3>
<p>To determine to position of the projectile we should compute the position vector \(\vec{r}=x(t)\vec{i}+y(t)\vec{i}\).</p>
<p>To determine to position of the projectile we should compute the position vector \(\vec{r}(t)=x(t)\vec{i}+y(t)\vec{i}\).</p>
<h5>\(x(t)\):</h5>
<p>We know from Newton second law that \(\sum \vec{F} = m\times \vec{a}_x = m\times a_x(t)\vec{i}\)</p>
<p>However, the projectile as a constant speed along \(\vec{i}\). Hence, \(a_x(t) = 0 \).</p>
@ -42,7 +42,9 @@
\[ x(t) = \int_{t_0}^t v_{0,x}dt = v_{0,x}t + C = v_{0,x}t + x_0\]
<h5>\(y(t)\):</h5>
<p>We know from Newton second law that \(\sum \vec{F} = m\times \vec{a}_y = m\times a_y(t)\vec{i}\)</p>
<p>The projectile is under the influence of the gravity that is oriented <em>downwarde</em>. Hence, \(a_y(t) = -g \).</p>
<p>The projectile is under the influence of the gravity that is oriented <em>downward</em>. Hence, \(a_y(t) = -g \).</p>
<p>Thus:</p>
\[ v_y(t) = \int_{t_0}^t a_{y}(t)dt = -gt+C = -gt + v_{0,y}\]
\[ y(t) = \int_{t_0}^t v_y(t)dt = -\frac{1}{2}gt^2 + v_{0,y}t+C=-\frac{1}{2}gt^2 + v_{0,y}t+y_0\]
<h5>\(\vec{r}(t)\):</h5>
Finally knowing \(x(t)\) and \(y(t)\) we have \( \vec{r}(t) = \left(\begin{smallmatrix}x(t)\\y(t)\end{smallmatrix}\right) = \left(\begin{smallmatrix}v_{0,x}t + x_0\\-\frac{1}{2}gt^2 + v_{0,y}t+y_0\end{smallmatrix}\right)\)

View file

@ -1,8 +1,8 @@
let t=0;
let v0=50
let x0=50
let y0=50
let x0=60
let y0=60
let g=9.81
let projectile= function (node){
@ -12,9 +12,19 @@ let projectile= function (node){
node.setup = function() {
c=node.createCanvas(Math.min(window.innerWidth,width), height);
v0t=node.createElement('p', '');
v0t=node.createElement('span', '');
katex.render("v_0", v0t.elt);
v0t.elt.style.color="#b4b4b4"
v0t.elt.style.color="white"
r=node.createElement('span', '');
katex.render("\\vec{r}(t)", r.elt);
r.elt.style.color="white"
vt=node.createElement('span', '');
katex.render("v(t)", vt.elt);
vt.elt.style.color="white"
};
// See explanations
@ -26,6 +36,10 @@ let projectile= function (node){
return height - (-1/2 * g * t**2 + v0 * t + y0)
}
function v(t) {
return (-g * t + v0)
}
node.draw = function() {
node.background(70);
@ -35,23 +49,23 @@ let projectile= function (node){
node.ellipse(x(t),y(t),20,20);
node.fill(255)
dots.push([x(t),y(t)])
if(t>50 || y(t)>height){
node.noLoop()
}
t+=0.05
node.push()
node.fill(22)
node.stroke(180)
m=draw_arrow(node,x0,height-y0,x0+v0,height-y0-v0)
console.log(m.y)
v0t.position(c.position().x+m.x,c.position().y+m.y)
node.pop()
draw_arrow(node,x(t),y(t),x(t)+x0,y(t)-v(t),vt,c)
draw_arrow(node,x0,height-y0,x(t),y(t),r,c)
draw_arrow(node,x0,height-y0,x0+v0,height-(y0+v0),v0t,c)
if(t>50 || (height-y0)<y(t)){
node.stop()
}
t+=0.05
};
node.windowResized = function(){
v0t.position(c.position().x+m.x,c.position().y+m.y)
node.resizeCanvas(Math.min(window.innerWidth,width), height);
draw_arrow(node,x(t),y(t),x(t)+x0,y(t)-v(t),vt,c,true)
draw_arrow(node,x0,height-y0,x(t),y(t),r,c,true)
draw_arrow(node,x0,height-y0,x0+v0,height-(y0+v0),v0t,c,true)
}
};

View file

@ -1,15 +1,47 @@
draw_arrow=function(p,x1,y1,x2,y2){
draw_arrow=function(p,x1,y1,x2,y2,elt=null,canvas,skiparrow=false){
var offset=5
// Reduce the length of the vector to have a better tip location
let v=p.createVector(x2-x1,y2-y1)
v.setMag(v.mag()-offset*2)
x2=x1+v.x
y2=y1+v.y
// Draw the vector
if(!skiparrow){
p.push()
p.strokeWeight(5)
p.line(x1,y1,x2,y2)
offset=5
var angle = p.atan2(y1 - y2, x1 - x2); //gets the angle of the line
p.translate(x2, y2); //translates to the destination vertex
p.rotate(angle-p.HALF_PI); //rotates the arrow point
p.triangle(-offset*0.8, offset, offset*0.8, offset, 0, -offset/2); //draws the arrow point as a triangle
p.pop();
}
if(elt != null){
// Compute center of the vector
v.setMag(v.mag()/2)
center=p.createVector(x1,y1).add(v)
// Compute x and y factor to offset elt
yfactor=p.abs(p.PI/2-p.abs(angle))/(p.PI/2)
xfactor=1-yfactor
justify=15
if(angle>0){
yfactor=-yfactor
}
cp=canvas.position()
elt.position(cp.x+center.x+justify*xfactor-5,cp.y+center.y-justify*yfactor-elt.elt.offsetHeight/2)
}
}
draw_elt_on_arrow=function(p,canvas,center,elt){
// Return the center of the arrow
return(p.createVector(x1+(x2-x1)/2,y1+(y2-y1)/2))
}