2021-10-03 21:34:25 +02:00
< div class = "row g-3" >
< div class = "col-sm" >
< div class = "input-group" >
< div class = "input-group-text" > \(x_0\)< / div >
2021-10-06 20:51:22 +02:00
< input type = "number" class = "form-control" v-model = "x0" >
2021-10-03 21:34:25 +02:00
< div class = "input-group-text" > \(m\)< / div >
< / div >
< / div >
< div class = "col-sm" >
< div class = "input-group" >
< div class = "input-group-text" > \(y_0\)< / div >
2021-10-06 20:51:22 +02:00
< input type = "number" class = "form-control" v-model = "y0" >
2021-10-03 21:34:25 +02:00
< div class = "input-group-text" > \(m\)< / div >
< / div >
< / div >
< div class = "col-sm" >
< div class = "input-group" >
2021-10-06 15:32:23 +02:00
< div class = "input-group-text" > \(v_{0,x}\)< / div >
2021-10-06 20:51:22 +02:00
< input type = "number" class = "form-control" v-model = "vx0" @ input = "v0_redraw" >
2021-10-06 15:32:23 +02:00
< div class = "input-group-text" > \(m.s\)< / div >
< / div >
< / div >
< div class = "col-sm" >
< div class = "input-group" >
< div class = "input-group-text" > \(v_{0,y}\)< / div >
2021-10-06 20:51:22 +02:00
< input type = "number" class = "form-control" v-model = "vy0" @ input = "v0_redraw" >
2021-10-03 21:34:25 +02:00
< div class = "input-group-text" > \(m.s\)< / div >
< / div >
< / div >
< div class = "col-sm" >
< div class = "input-group" >
< div class = "input-group-text" > \(g\)< / div >
< input type = "number" class = "form-control" v-model = "g" >
< div class = "input-group-text" > \(m.s^{-2}\)< / div >
< / div >
< / div >
< div class = "col-auto" >
2021-10-06 15:32:23 +02:00
< button class = "btn btn-primary" onClick = "refresh()" > Restart< / button >
2021-10-03 21:34:25 +02:00
< / div >
< / div >
< br / > < br / > < br / >
< h3 > Projectile Motion< / h3 >
2021-10-05 15:50:11 +02:00
< p > To determine to position of the projectile we should compute the position vector \(\vec{r}(t)=x(t)\vec{i}+y(t)\vec{j}\).< / p >
2021-10-04 17:53:12 +02:00
< h5 > \(x(t)\):< / h5 >
< p > We know from Newton second law that \(\sum \vec{F} = m\times \vec{a}_x = m\times a_x(t)\vec{i}\)< / p >
< p > However, the projectile as a constant speed along \(\vec{i}\). Hence, \(a_x(t) = 0 \).< / p >
< p > Thus:< / p >
2021-10-05 15:50:11 +02:00
\[ v_x(t) = v_{x,0} \]
2021-10-04 17:53:12 +02:00
\[ x(t) = \int_{t_0}^t v_{0,x}dt = v_{0,x}t + C = v_{0,x}t + x_0\]
< h5 > \(y(t)\):< / h5 >
2021-10-05 15:50:11 +02:00
< p > We know from Newton second law that \(\sum \vec{F} = m\times \vec{a}_y = m\times a_y(t)\vec{j}\)< / p >
2021-10-05 09:26:35 +02:00
< p > The projectile is under the influence of the gravity that is oriented < em > downward< / em > . Hence, \(a_y(t) = -g \).< / p >
2021-10-04 17:53:12 +02:00
< p > Thus:< / p >
\[ v_y(t) = \int_{t_0}^t a_{y}(t)dt = -gt+C = -gt + v_{0,y}\]
\[ y(t) = \int_{t_0}^t v_y(t)dt = -\frac{1}{2}gt^2 + v_{0,y}t+C=-\frac{1}{2}gt^2 + v_{0,y}t+y_0\]
2021-10-05 09:26:35 +02:00
< h5 > \(\vec{r}(t)\):< / h5 >
2021-10-05 15:50:11 +02:00
< p > Finally knowing \(x(t)\) and \(y(t)\) we have \( \vec{r}(t) = \left(\begin{smallmatrix}x(t)\\y(t)\end{smallmatrix}\right) = \left(\begin{smallmatrix}v_{0,x}t + x_0\\-\frac{1}{2}gt^2 + v_{0,y}t+y_0\end{smallmatrix}\right)\)< / p >
< p > We can deduce also that \( \vec{v}(t) = \left(\begin{smallmatrix}v_x(t)\\v_y(t)\end{smallmatrix}\right) = \left(\begin{smallmatrix}v_{0,x}\\-gt+v_{0,y}\end{smallmatrix}\right)\)< / p >