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Abstract. Information and Communication Technology takes a growing
part in the worldwide energy consumption. One of the root causes of this
increase lies in the multiplication of connected devices. Each object of the
Internet-of-Things often does not consume much energy by itself. Yet,
their number and the infrastructures they require to properly work have
leverage. In this paper, we combine simulations and real measurements
to study the energy impact of IoT devices. In particular, we analyze
the energy consumption of Cloud and telecommunication infrastructures
induced by the utilization of connected devices, And we propose an end-
to-end energy consumption model for these devices.

1 Introduction

In 2018, Information and Communication Technology (ICT) was estimated to
absorb around 3% of the global energy consumption [1]. This consumption is
estimated to grow at a rate of 9% per year [1]. This alarming growth is explained
by the fast emergence of numerous applications and new ICT devices. These
devices supply services for smart building, smart factories and smart cities for
instance. Through connected sensors producing data, actuators interacting with
their environment and communication means – all being parts of the Internet of
Things (IoT) – they provide optimized decisions.

This increase in number of devices implies an increase in the energy needed to
manufacture and utilize them. Yet, the overall energy bill of IoT also comprises
indirect costs, as it relies on computing and networking infrastructures that
consume energy to enable smart services. Indeed, IoT devices communicate with
Cloud computing infrastructures to store, analyze and share their data.

In February 2019, a report by Cisco stated that “IoT connections will repre-
sent more than half (14.6 billion) of all global connected devices and connections
(28.5 billion) by 2022” [2]. This will represent more than 6% of global IP traffic
in 2022, against 3% in 2017 [2]. This increasing impact of IoT devices on Internet
connections induces a growing weight on ICT energy consumption.

The energy consumption of IoT devices themselves is only the top of the
iceberg: their use induce energy costs in communication and cloud infrastruc-
tures. In this paper, we estimate the overall energy consumption of an IoT device



environment by combining simulations and real measurements. We focus on a
given application with low bandwidth requirement and we evaluate its overall
energy consumption: from the device, through telecommunication networks, and
up to the Cloud data center hosting the application. From this analysis, we de-
rive an end-to-end energy consumption model that can be used to assess the
consumption of other IoT devices.

While some IoT devices produce a lot of data, like smart vehicles for in-
stance, many others generate only a small amount of data, like smart meters.
However, the scale matters here: many small devices can end up producing big
data volumes. As an example, according to a report published by Sandvine in
October 2018, the Google Nest Thermostat is the most significant IoT device in
terms of worldwide connections: it represents 0.16% of all connections, ranging
55th on the list of connections [3]. As a comparison, the voice assistants Alexa
and Siri are respectively 97th and 102nd with 0.05% of all connections [3]. This
example highlights the growing importance of low-bandwidth IoT applications
on Internet infrastructures, and consequently on their energy consumption.

In this paper, we focus on IoT devices for low-bandwidth applications such
as smart meters or smart sensors. These devices send few data periodically to
cloud servers, either to store them or to get computing power and take decisions.
This is a first step towards a comprehensive characterization of the global IoT
energy footprint. While few studies address the energy consumption of high-
bandwidth IoT applications [4], to the best of our knowledge, none of them
targets low-bandwidth applications, despite their growing importance on the
Internet infrastructures.

Low-bandwidth IoT applications, such as the Nest Thermostat, often relies
on sensors powered by batteries. For such sensors, reducing their energy con-
sumption is a critical target. Yet, we argue that end-to-end energy models are
required to estimate the overall impact of IoT devices, and to understand how to
reduce their complete energy consumption. Without such models, one could op-
timize the consumption of on-battery devices at a heavier cost for cloud servers
and networking infrastructures, resulting on an higher overall energy consump-
tion. Using end-to-end models could prevent these unwanted effects.

Our contributions include:

– a characterization of low-bandwidth IoT applications;

– an analysis of the energy consumption of a low-bandwidth IoT application in-
cluding the energy consumption of the WiFi IoT device and the consumption
induced by its utilization on the Cloud and telecommunication infrastruc-
tures;

– an end-to-end energy model for low-bandwidth IoT applications relying on
WiFi devices.

The paper is organized as follows. Section 2 presents the state of the art.
The low-bandwidth IoT application is characterized in Section 3, and details on
its architecture are provided in Section 4. Section 5 provides our experimental
results combining real measurements and simulations. Section 6 discusses the



key findings an the end-to-end energy model. Finally, Section 7 concludes this
work and presents future work.

2 Related Work

2.1 Energy consumption of IoT devices

The multiplication of smart devices and smart applications pushes the limits of
Internet: IoT is now used everywhere for home automation, smart agriculture,
e-health, smart cities, logistics, smart grids, smart buildings, etc. [5,6,7]. IoT
devices are typically used to optimize processes and the envisioned application
domains include the energy distribution and management. It can for instance
help the energy management of product life-cycle [8]. Yet, few studies address
the impact of IoT itself on global energy consumption [9,4] or CO2 emissions
[10].

The underlying architecture of these smart applications usually includes sens-
ing devices, cloud servers, user applications and telecommunication networks.
Concerning the computing part, the cloud servers can either be located on Cloud
data centers, on Fog infrastructures located at the network edge, or on home
gateways [5]. Various network technologies are employed by IoT devices to com-
municate with their nearby gateway; either wired networks with Ethernet or
wireless networks: WiFi, Bluetooth, Near Field Communication (NFC), ZigBee,
cellular network (like 3G, LTE, 4G), Low Power Wide Area Network (LPWAN),
etc. [11,12]. The chosen technology depends on the smart device characteristics
and the targeted communication performance. The Google Nest Thermostat can
for instance use WiFi, 802.15.4 and Bluetooth [13]. In this paper, we focus on
WiFi as it is broadly available and employed by IoT devices [11,14].

Several works aim at reducing the energy consumption of the device transmis-
sion [15] or improving the energy efficiency of the access network technologies
[12]. An extensive literature exists on increasing the lifetime of battery-based
wireless sensor networks [5]. Yet, IoT devices present more diversity than typi-
cal wireless sensors in terms of hardware characteristics, communication means
and data production patterns.

Based on real measurements, previous studies have proposed energy models
for IoT devices. Yet, these models are specific to a given kind of IoT device
or a given transmission technology. Martinez et al. provide energy consumption
measurements for wireless sensor networks using SIGFOX transmissions and
employed for smart-parking systems [16]. Wu et al. implement an energy model
for WiFi devices in the well-known ns3 network simulator [14].

2.2 Energy consumption of network and cloud infrastructures

IoT architecture rely on telecommunication networks and Cloud infrastructures
to provide services. The data produced by IoT devices are stored and exploited
by servers located either in Cloud data centers or Fog edge sites. While studies



exist on the energy consumption of network and cloud infrastructures in general
[17], they do not consider the specific case of IoT devices. To the best of our
knowledge, no study estimates the direct impact of IoT applications on the
energy consumption of these infrastructures.

Most work focusing on energy consumption, Cloud architecture and IoT ap-
plications tries to answer the question: where to locate data processing in order
to save energy [9], to reduce the CO2 impact [10], or to optimize renewable
energy consumption [4].

In both cases, the network and cloud infrastructures, attributing the energy
consumption to a given user or application is a challenging task. The complexity
comes from the shared nature of these infrastructures: a given Ethernet port in
the core of the network processes many packets coming from a high number of
sources [9]. Moreover, the employed equipment is not power proportional: servers
and routers consume consequent amounts of energy while being idle [18,4]. The
power consumed by a device is divided into two parts: a dynamic part that
varies with traffic or amount of computation to process, and a static part that
is constant and dissipated even while being idle [17]. This static part implies
that a consequent energy cost of running an application on a server is due to the
device being simply powered on. Consequently, sharing these static energy costs
among all the concerned users requires an end-to-end model [4].

In this paper, we focus on IoT devices using WiFi transmission and gen-
erating low data volumes. Our model, extracted from real measurements and
simulations, can be adapted to other kinds of devices and transmission technolo-
gies.

3 Characterization of low-bandwidth IoT applications

In this section, we detail the characteristics of the considered IoT application.
While the derived model is more generic, we focus on a given application to
obtain a precise use-case with accurate power consumption measurements.

The Google Nest Thermostat relies on five sensors: temperature, humidity,
near-field activity, far-field activity and ambient light [13]. Periodical measure-
ments, sent through wireless communications on the Internet, are stored on
Google data centers and processed to learn the home inhabitants habits. The
learned behavior is employed to automatically adjust the home temperature
managed by heating and cooling systems.

Each IoT device senses periodically its environment. Then, it sends the pro-
duced data through WiFi (in our context) to its gateway or Access Point (AP).
The AP is in charge of transmitting the data to the cloud using the Internet.
Figure 1 illustrates this architecture. Several IoT devices can share the same
AP in a home. We consider low-bandwidth applications where devices produces
several network packets during each sensing period. The transmitting frequency
can vary from one to several packet sent per minute [2].

We consider that the link between the AP and the Cloud is composed of
several network switches and routers using Ethernet as shown in Figure 2. The



Fig. 1. Overview of IoT devices.

number of routers on the path depends on the location of the server, either in a
Cloud data center or in a Fog site at the edge of the network.

We assume that the server hosting the application data for the users belongs
to a shared cloud facility with classical service level agreement (SLA). The facility
provides redundant storage and computing means as virtual machines (VMs). A
server can host several VMs at the same time.

Fig. 2. Overview of the IoT architecture.

In the following, we describe the experimental setup, the results and the
end-to-end model. For all these steps, we decompose the overall IoT architecture
into three parts: the IoT device part, the networking part and the cloud part,
as displayed on Figure 2.

4 Experimental setup

Ajouter % de bande passante utilisé par les applis low-rate In this section, we
describe the experimental setup employed to acquire energy measurements for
each of the three parts of our system model. The IoT and the network parts
are modeled through simulations. The Cloud part is modeled using real servers
connected to wattmeters. In this way, it is possible to evaluate the end-to-end
energy consumption of the system.



4.1 IoT Part

In the first place, the IoT part is composed of several sensors connected to an
Access Point (AP) which form a cell. This cell is studied using the ns3 network
simulator. In the experimental scenario, we setup between 5 and 15 sensors
connected to the AP using WiFi 5GHz 802.11n. The node are placed randomly
in a rectangle of 400m2 around the AP which corresponds to a typical use case
for a home environment. All the cell nodes employ the default WIFI energy
model provided by ns3. The different energy values used by the energy model are
provided on Table 1. These parameters were extracted from previous work[19,4]
On IEEE 802.11n. Besides, we suppose that the energy source of each nodes is
not limited during the experiments. Thus each node can communicate until the
end of all the simulations.

As a scenario, sensors send 192 bits packets to the AP composed of: 1) A 128
bits sensors id 2) A 32 bits integer representing the temperature 3) An integer
timestamp representing the temperature sensing date. They are stored as time
series. The data are transmitted immediately at each sensing interval I that we
vary from 1s to 60s. Finally, the AP is in charge of relaying data to the cloud
via the network part.

Table 1. Simulations Energy Parameters

(a) Wifi

Parameter Value

Supply Voltage 3.3V
Tx 0.38A
Rx 0.313A
Idle 0.273A

(b) Network

Parameter Value

Idle 1W
Bytes (Tx/Rx) 3.4nJ
Pkt (Tx/Rx) 192.0nJ

4.2 Network Part

The network part represents the a network section starting from the AP to
the Cloud excluding the server. It is also modeled into ns3. We consider the
server to be 9 hops away from the AP with a typical round-trip latency of
100ms from the AP to the server [4]. Each node from the AP to the Cloud is
a network switch with static and dynamic network energy consumption. The
first 8 hops are edge switches and the last one is consider to be a core router
as mentioned in [9]. ECOFEN [20] is used to model the energy consumption
of the network part. ECOFEN is an ns3 network energy module dedicated to
wired networks. It is based on an energy-per-bit and energy-per-packet model
for the dynamic energy consumption [21,22], and it includes also a static energy
consumption. The different values used to instantiate the ECOFEN energy model
for the network part are shown in Table 1(b) and come from previous work [23].



4.3 Cloud Part

Finally, to measure the energy consumed by the Cloud part, we use a real server
from the large-scale test-bed Grid’5000. Grid’5000 provides clusters composed
of several nodes which are connected to wattmeters. The wattmeters provide
50 instantaneous power measurements per second and per server. This way, we
can benefit from real energy measurements. The server used in the experiment
embeds two Intel Xeon E5-2620 v4 processors with 64 GB of RAM and 600GB
of disk space on a Linux based operating system. This server is configured to use
KVM as virtualization mechanism. We deploy a classical Debian x86 64 distribu-
tion on the Virtual Machine (VM) along with a MySQL database. We use differ-
ent amounts of allocated memory for the VM namely 1024MB/2048MB/4096MB
to highlight its effects on the server energy consumption. The server only hosts
this VM in order to easily isolate its power consumption.

Fig. 3. Grid’5000 experimental setup.

The data sent by the IoT devices are simulated using another server from
the same cluster. This server is in charge of sending the data packets to the VM
hosting the application in order to fill its database. In the following, each data
packet coming from an IoT device and addressed to the application VM is called a
request. Consequently, it is easy to vary the different application characteristics
namely: 1) The number of requests, to virtually add/remove sensors 2) The
requests interval, to study the impact of the transmitting frequency. Figure 3
presents this simulation setup.

5 Evaluation

In this section, we analyze the experimental results.



5.1 IoT and Network Power Consumption

In a first place, we start by studying the impact of the sensors’ transmission
frequency on their energy consumption. To this end, we run several simulations in
ns3 with 15 sensors using different transmission frequencies. The results provided
by Table 2 show that the transmission frequency has a very low impact on the
energy consumption and on the average end-to-end application delay. It has an
impact of course, but it is very limited. This due to the fact that in such a scenario
with very small number of communications spread over the time, sensors don’t
have to contend for accessing to the Wifi channel.

Table 2. Sensors transmission interval effects

Sensors Send Interval 10s 30s 50s 70s 90s

Sensors Power Consumption 13.51794W 13.51767W 13.51767W 13.51767W 13.51761W
Network Power Consumption 10.44178W 10.44167W 10.44161W 10.44161W 10.44161W
End-to-end Application Delay 0.09951s 0.10021s 0.10100s 0.10203s 0.10202s

Previous work [4] on a similar scenario shows that increasing application
accuracy impacts strongly the energy consumption in the context of data stream
analysis. However, in our case, application accuracy is driven by the sensing
interval and thus, the transmission frequency of the sensors. In our case with
small and sporadic network traffic, these results show that with a reasonable
transmission interval, the energy consumption of the IoT and the network parts
are almost not affected by the variation of this transmission interval. In fact,
transmitted data are not large enough to leverage the energy consumed by the
network.

We then vary the number of sensors in the Wifi cell. The Figure 4 repre-
sents the energy consumed by each simulated part according to the number of
sensors. It is clear that the energy consumed by the network is the dominant
part. However, if the number of sensors is increasing, the energy consumed by
the network can become smaller than the sensors part. In fact, deploying new
sensors in the cell do not introduce much network load. To this end, sensors
energy consumption can become dominant.

5.2 Cloud Energy Consumption

In this end-to-end energy consumption study, cloud accounts for a huge part
of the overall energy consumption. According a report [24] On United States
data center energy usage, the average Power Usage Effectiveness (PUE) of an
hyper-scale data center is 1.2. Thus, in our analysis, all energy measurement on
cloud server will account for this PUE. It means that the power consumption
of the server is multiplied by the PUE to include the external energy costs like
server cooling and data center facilities [17].



Fig. 4. Analysis of the variation of the number of sensors on the IoT/Network
part energy consumption.

Firstly, we analyze the impact of the VM allocated memory on the server
energy consumption. Figure 5 depicts the server energy consumption according
to the VM allocated memory for 20 sensors sending data every 10s. Note that the
horizontal red line represents the average energy consumption for the considered
sample of energy values. We can see that at each transmission interval, the server
faces spikes of energy consumption. However, the amount of allocated memory to
the VM does not significantly influence the server energy consumption. In fact,
simple database requests do not need any particular heavy memory accesses and
processing time. Thus, remaining experiments are based on VM with 1024MB
of allocated memory.

Fig. 5. Server power consumption multiplied by the PUE (= 1.2) using 20 sen-
sors sending data every 10s for various VM memory sizes



Next, we study the effects of increasing the number of sensors on the server
energy consumption. Figure 6(a) presents the results of the average server energy
consumption when varying the number of sensors from 20 to 500, while Figure
6(b) presents the average server energy cost per sensor according to the number
of sensors. These results show a clear linear relation between the number of
sensors and the server energy consumption. Moreover, we can see that the more
sensors we have per VM, the more energy we can save. In fact, since the server’s
idle power consumption is high (around 97 Watts), it is more energy efficient to
maximize the number of sensors per server. As shown on Figure 6(b), a significant
amount of energy can be save when passing from 20 to 300 sensors per VM.
Note that these measurements are not the row measurements taken from the
wattmeters: they include the PUE but they are not shared among all the VMs
that could be hosted on this server. So, for the studied server, its static power
consumption (also called idle consumption) is around 83.2 Watts and we consider
a PUE of 1.2, this value is taken from [24]}.

(a) Average server energy consump-
tion multiplied by the PUE (= 1.2)

(b) Average sensors energy cost on
the server hosting only our VM

Fig. 6. Server energy consumption multiplied by the PUE (= 1.2) for sensors
sending data every 10s

A last parameter can leverage server energy consumption, namely sensors
transmission interval. In addition to increasing the application accuracy, sensors
transmission frequency increases network traffic and database accesses. Figure
7 presents the impact on the server energy consumption when changing the
transmission interval of 50 sensors to 1s, 10s and 30s. We can see that, the lower
sensors transmission interval is, the more server energy consumption peaks occur.
Therefore, it leads to an increase of the server energy consumption.



Fig. 7. Server energy consumption multiplied by the PUE (= 1.2) for 50 sensors
sending requests at different transmission interval.

6 End-To-End Consumption Model

To have an overview of the energy consumed by the overall system, it is important
to consider the end-to-end energy consumption. We detail here the model used
to attribute the energy consumption of our application for each part of the
architecture. For a given IoT device, we have:

1. For the IoT part, the entire consumption of the IoT device belongs to the
system’s accounted consumption.

2. For the network part, the data packets generated by the IoT device travel
through network switches, routers and ports that are shared with other trafic.

3. For the cloud part, the VM hosthing the data is shared with other IoT
devices belonging to the same application and the server hosting the VM
also hosts other VMs. Furthermore, the server belongs to a data center and
takes part in the overall energy drawn to cool the server room.

Concerning the sharing of the network costs, for each router, we consider its
aggregate bandwidth (on all the ports), its average link utilization and the share
taken by our IoT application. For a given network device, we compute our share
of the static energy part as follows:

Pnetdevice
static =

P device
static ×Bandwidthapplication

AggregateBandwidthdevice × LinkUtilizationdevice

where P device
static is the static power consumption of the network device (switch

fabrics for instance or gateway), Bandwidthapplication is the bandwidth used
by our IoT application, AggregateBandwidthdevice is the overall aggregated
bandwidth of the network device on all its ports, and LinkUtilizationdevice is the
effective link utilization percentage. The formula includes the link utilization in
order to charge for the effective energy cost per trafic and not for the theoretical
upper bound which is the link bandwidth. Indeed, using such an upper bound
leads to greatly underestimate our energy part, since link utilization typically
varies between 5 to 40% [25,26].



Similarly, for each network port, we take the share attributable to our appli-
cation: the ratio of our bandwidth utilization over the port bandwidth multiplied
by the link utilization and the overall static power consumption of the port.

For the sharing of the Cloud costs, we take into account the number of VMs
that a server can host, the CPU utilization of a VM and the PUE. For a given
Cloud server hosting our IoT application, we compute our share of the static
energy part as follows:

PCloudserver
static =

P server
static × PUEDataCenter

HostedVMsserver

Where P server
static is the static power consumption of the server, PUEDataCenter

is the data center PUE, and HostedVMsserver is the number of VMs a server can
host. This last parameter should be adjusted in the case of VMs with multiple
virtual CPUs. We do not consider here over-commitment of Cloud servers. Yet,
the dynamic energy part is computed with the real dynamic measurements, so
it accounts for VM over-provisionning and resource under-utilization.

In our case, the Cloud server has 14 cores, which corresponds to the potential
hosting of 14 small VMs with one virtual CPU each, and each vCPU is pinned to
a server core. We consider that for fault-tolerance purpose, the IoT application
has a replication factor of 2, meaning that two cloud servers store its database.

The Figure 6 represents the end-to-end system energy consumption using
the model described above while varying the number of sensors. The values are
extracted from the experiments presented in the previous section.

Note that, for small-scale systems, the server energy consumption is dominant
compared to the energy consumed by the sensors. However, since we are using a
single server, large-scale sensors deployment lead to an increasing consumption of
energy in the IoT part. On the other side, network energy consumption is stable
regarding the number of sensors since the system use case does not required large
data transfers. Thus, to save energy, we should maximize the number of sensors
handle by each cloud server while keeping reasonable sensors request intervals.

7 Conclusion

Information and Communication Technology takes a growing part in the world-
wide energy consumption. One of the root causes of this increase lies in the
multiplication of connected devices. Each object of the Internet-of-Things often
does not consume much energy by itself. Yet, their number and the infrastruc-
tures they require to properly work have leverage.

In this paper, we combine simulations and real measurements to study the
energy impact of IoT devices. In particular, we analyze the energy consump-
tion of Cloud and telecommunication infrastructures induced by the utilization
of connected devices. Through the fine-grain analysis of a given low-bandwidth
IoT device periodically sending data to a Cloud server using WiFi, we propose
an end-to-end energy consumption model. This model provides insights on the
hidden part of the iceberg: the impact of IoT devices on the energy consumption



Fig. 8. End-to-end network energy consumption using sensors interval of 10s

of Cloud and network infrastructures. On our use-case, we show that for a given
sensor, its larger energy consumption is on the Cloud part. Consequently, with
the IoT exploding growth, it becomes necessary to improve the energy efficiency
of applications hosted on Cloud infrastructures. Our future work includes study-
ing other types of IoT wireless transmission techniques and IoT applications in
order to increase the applicability of our model.
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