mirror of
https://gitlab.com/manzerbredes/paper-lowrate-iot.git
synced 2025-04-08 14:29:07 +00:00
Correct figure
This commit is contained in:
parent
8ec8558874
commit
e27df9ed84
14 changed files with 1955 additions and 2 deletions
170
2019-CloudCom.aux
Normal file
170
2019-CloudCom.aux
Normal file
|
@ -0,0 +1,170 @@
|
|||
\relax
|
||||
\providecommand\hyper@newdestlabel[2]{}
|
||||
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
||||
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
||||
\global\let\oldcontentsline\contentsline
|
||||
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
|
||||
\global\let\oldnewlabel\newlabel
|
||||
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
||||
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
||||
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
||||
\let\contentsline\oldcontentsline
|
||||
\let\newlabel\oldnewlabel
|
||||
\fi}
|
||||
\fi}
|
||||
\global\let\hyper@last\relax
|
||||
\gdef\HyperFirstAtBeginDocument#1{#1}
|
||||
\providecommand\HyField@AuxAddToFields[1]{}
|
||||
\providecommand\HyField@AuxAddToCoFields[2]{}
|
||||
\citation{ShiftProject}
|
||||
\citation{ShiftProject}
|
||||
\citation{Cisco2019}
|
||||
\citation{Cisco2019}
|
||||
\citation{Sandvine2018}
|
||||
\citation{Sandvine2018}
|
||||
\citation{li_end--end_2018}
|
||||
\citation{offloading}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {I}Introduction}{1}{section.1}\protected@file@percent }
|
||||
\citation{Wang2016}
|
||||
\citation{Ejaz2017}
|
||||
\citation{Minoli2017}
|
||||
\citation{Tao2016}
|
||||
\citation{jalali_fog_2016}
|
||||
\citation{li_end--end_2018}
|
||||
\citation{Sarkar2018}
|
||||
\citation{Wang2016}
|
||||
\citation{Samie2016}
|
||||
\citation{Gray2015}
|
||||
\citation{Nest}
|
||||
\citation{Samie2016}
|
||||
\citation{ns3-energywifi}
|
||||
\citation{Andres2017}
|
||||
\citation{Gray2015}
|
||||
\citation{offloading}
|
||||
\citation{Wang2016}
|
||||
\citation{Martinez2015}
|
||||
\citation{ns3-energywifi}
|
||||
\citation{offloading}
|
||||
\citation{li_end--end_2018}
|
||||
\citation{li_end--end_2018}
|
||||
\citation{Ehsan}
|
||||
\citation{jalali_fog_2016}
|
||||
\citation{Sarkar2018}
|
||||
\citation{li_end--end_2018}
|
||||
\citation{jalali_fog_2016}
|
||||
\citation{mahadevan_power_2009}
|
||||
\citation{li_end--end_2018}
|
||||
\citation{Ehsan}
|
||||
\citation{li_end--end_2018}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {II}Related Work}{2}{section.2}\protected@file@percent }
|
||||
\newlabel{sec:orge831050}{{II}{2}{Related Work}{section.2}{}}
|
||||
\newlabel{sec:sota}{{II}{2}{Related Work}{section.2}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {\unhbox \voidb@x \hbox {II-A}}Energy consumption of IoT devices}{2}{subsection.2.1}\protected@file@percent }
|
||||
\newlabel{sec:org77c2591}{{\unhbox \voidb@x \hbox {II-A}}{2}{Energy consumption of IoT devices}{subsection.2.1}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {\unhbox \voidb@x \hbox {II-B}}Energy consumption of network and cloud infrastructures}{2}{subsection.2.2}\protected@file@percent }
|
||||
\newlabel{sec:orga15491a}{{\unhbox \voidb@x \hbox {II-B}}{2}{Energy consumption of network and cloud infrastructures}{subsection.2.2}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {III}Characterization of low-bandwidth IoT applications}{2}{section.3}\protected@file@percent }
|
||||
\newlabel{sec:org1da7386}{{III}{2}{Characterization of low-bandwidth IoT applications}{section.3}{}}
|
||||
\newlabel{sec:usec}{{III}{2}{Characterization of low-bandwidth IoT applications}{section.3}{}}
|
||||
\citation{Nest}
|
||||
\citation{Cisco2019}
|
||||
\citation{halperin_demystifying_nodate}
|
||||
\citation{li_end--end_2018}
|
||||
\citation{li_end--end_2018}
|
||||
\citation{jalali_fog_2016}
|
||||
\citation{orgerie_simulation_2017}
|
||||
\citation{sivaraman_profiling_2011}
|
||||
\citation{Serrano2015}
|
||||
\citation{cornea_studying_2014-1}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Overview of IoT devices.}}{3}{figure.1}\protected@file@percent }
|
||||
\newlabel{fig:IoTdev}{{1}{3}{Overview of IoT devices}{figure.1}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Overview of the IoT architecture.}}{3}{figure.2}\protected@file@percent }
|
||||
\newlabel{fig:parts}{{2}{3}{Overview of the IoT architecture}{figure.2}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {IV}Experimental setup}{3}{section.4}\protected@file@percent }
|
||||
\newlabel{sec:orgb5f6554}{{IV}{3}{Experimental setup}{section.4}{}}
|
||||
\newlabel{sec:model}{{IV}{3}{Experimental setup}{section.4}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {\unhbox \voidb@x \hbox {IV-A}}IoT Part}{3}{subsection.4.1}\protected@file@percent }
|
||||
\newlabel{sec:orgeb67dd0}{{\unhbox \voidb@x \hbox {IV-A}}{3}{IoT Part}{subsection.4.1}{}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {I}{\ignorespaces Simulations Energy Parameters}}{3}{table.1}\protected@file@percent }
|
||||
\newlabel{tab:wifi-energy}{{I}{3}{Simulations Energy Parameters}{table.1}{}}
|
||||
\newlabel{tab:net-energy}{{I(b)}{3}{Subtable I(b)}{subtable.1.2}{}}
|
||||
\newlabel{sub@tab:net-energy}{{(b)}{3}{Subtable I(b)\relax }{subtable.1.2}{}}
|
||||
\newlabel{tab:params}{{I}{3}{Simulations Energy Parameters}{subtable.1.2}{}}
|
||||
\@writefile{lot}{\contentsline {subtable}{\numberline{(a)}{\ignorespaces {IoT part}}}{3}{subtable.1.2}\protected@file@percent }
|
||||
\@writefile{lot}{\contentsline {subtable}{\numberline{(b)}{\ignorespaces {Network part}}}{3}{subtable.1.2}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {\unhbox \voidb@x \hbox {IV-B}}Network Part}{3}{subsection.4.2}\protected@file@percent }
|
||||
\newlabel{sec:orgaeb55ca}{{\unhbox \voidb@x \hbox {IV-B}}{3}{Network Part}{subsection.4.2}{}}
|
||||
\citation{li_end--end_2018}
|
||||
\citation{shehabi_united_2016-1}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {\unhbox \voidb@x \hbox {IV-C}}Cloud Part}{4}{subsection.4.3}\protected@file@percent }
|
||||
\newlabel{sec:orgfc9ea54}{{\unhbox \voidb@x \hbox {IV-C}}{4}{Cloud Part}{subsection.4.3}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Grid'5000 experimental setup.}}{4}{figure.3}\protected@file@percent }
|
||||
\newlabel{fig:g5kExp}{{3}{4}{Grid'5000 experimental setup}{figure.3}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {V}Evaluation}{4}{section.5}\protected@file@percent }
|
||||
\newlabel{sec:org8201f68}{{V}{4}{Evaluation}{section.5}{}}
|
||||
\newlabel{sec:eval}{{V}{4}{Evaluation}{section.5}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {\unhbox \voidb@x \hbox {V-A}}IoT and Network Power Consumption}{4}{subsection.5.1}\protected@file@percent }
|
||||
\newlabel{sec:org1d05c1b}{{\unhbox \voidb@x \hbox {V-A}}{4}{IoT and Network Power Consumption}{subsection.5.1}{}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {II}{\ignorespaces Sensors transmission interval effects with 15 sensors}}{4}{table.2}\protected@file@percent }
|
||||
\newlabel{tab:sensorsSendIntervalEffects}{{II}{4}{Sensors transmission interval effects with 15 sensors}{table.2}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {\unhbox \voidb@x \hbox {V-B}}Cloud Energy Consumption}{4}{subsection.5.2}\protected@file@percent }
|
||||
\newlabel{sec:org9daa066}{{\unhbox \voidb@x \hbox {V-B}}{4}{Cloud Energy Consumption}{subsection.5.2}{}}
|
||||
\citation{Ehsan}
|
||||
\citation{heinrich_predicting_2017}
|
||||
\citation{shehabi_united_2016-1}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Analysis of the variation of the number of sensors on the IoT/Network part energy consumption for a transmission interval of 10s.}}{5}{figure.4}\protected@file@percent }
|
||||
\newlabel{fig:sensorsNumber}{{4}{5}{Analysis of the variation of the number of sensors on the IoT/Network part energy consumption for a transmission interval of 10s}{figure.4}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {VI}End-to-End Consumption Model}{5}{section.6}\protected@file@percent }
|
||||
\newlabel{sec:orgfd3b6ae}{{VI}{5}{End-to-End Consumption Model}{section.6}{}}
|
||||
\newlabel{sec:discuss}{{VI}{5}{End-to-End Consumption Model}{section.6}{}}
|
||||
\citation{Hassidim2013}
|
||||
\citation{Zhang2016}
|
||||
\citation{mahadevan_power_2009}
|
||||
\citation{Hassidim2013}
|
||||
\citation{orgerie_simulation_2017}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Server power consumption multiplied by the PUE (= 1.2) using 20 sensors sending data every 10s for various VM memory sizes}}{6}{figure.5}\protected@file@percent }
|
||||
\newlabel{fig:vmSize}{{5}{6}{Server power consumption multiplied by the PUE (= 1.2) using 20 sensors sending data every 10s for various VM memory sizes}{figure.5}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Average server power consumption multiplied by the PUE (= 1.2) for sensors sending data every 10s}}{6}{figure.6}\protected@file@percent }
|
||||
\newlabel{fig:sensorsNumber-server}{{6}{6}{Average server power consumption multiplied by the PUE (= 1.2) for sensors sending data every 10s}{figure.6}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Average sensors power cost on the server hosting only our VM with PUE (= 1.2) for sensors sending data every 10s}}{6}{figure.7}\protected@file@percent }
|
||||
\newlabel{fig:sensorsNumber-WPS}{{7}{6}{Average sensors power cost on the server hosting only our VM with PUE (= 1.2) for sensors sending data every 10s}{figure.7}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Server energy consumption multiplied by the PUE (= 1.2) for 50 sensors sending requests at different transmission interval.}}{7}{figure.8}\protected@file@percent }
|
||||
\newlabel{fig:sensorsFrequency}{{8}{7}{Server energy consumption multiplied by the PUE (= 1.2) for 50 sensors sending requests at different transmission interval}{figure.8}{}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {III}{\ignorespaces Network Devices Parameters}}{7}{table.3}\protected@file@percent }
|
||||
\newlabel{tab:netbidules}{{III}{7}{Network Devices Parameters}{table.3}{}}
|
||||
\newlabel{fig:end-to-end}{{VI}{7}{End-to-End Consumption Model}{table.3}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces End-to-end network energy consumption using sensors interval of 10s}}{7}{figure.9}\protected@file@percent }
|
||||
\bibstyle{IEEEtran}
|
||||
\bibdata{references}
|
||||
\bibcite{ShiftProject}{1}
|
||||
\bibcite{Cisco2019}{2}
|
||||
\bibcite{Sandvine2018}{3}
|
||||
\bibcite{li_end--end_2018}{4}
|
||||
\bibcite{offloading}{5}
|
||||
\bibcite{Wang2016}{6}
|
||||
\bibcite{Ejaz2017}{7}
|
||||
\bibcite{Minoli2017}{8}
|
||||
\bibcite{Tao2016}{9}
|
||||
\bibcite{jalali_fog_2016}{10}
|
||||
\bibcite{Sarkar2018}{11}
|
||||
\bibcite{Samie2016}{12}
|
||||
\bibcite{Gray2015}{13}
|
||||
\bibcite{Nest}{14}
|
||||
\bibcite{ns3-energywifi}{15}
|
||||
\bibcite{Andres2017}{16}
|
||||
\bibcite{Martinez2015}{17}
|
||||
\bibcite{Ehsan}{18}
|
||||
\bibcite{mahadevan_power_2009}{19}
|
||||
\bibcite{halperin_demystifying_nodate}{20}
|
||||
\bibcite{orgerie_simulation_2017}{21}
|
||||
\bibcite{sivaraman_profiling_2011}{22}
|
||||
\bibcite{Serrano2015}{23}
|
||||
\bibcite{cornea_studying_2014-1}{24}
|
||||
\bibcite{shehabi_united_2016-1}{25}
|
||||
\bibcite{heinrich_predicting_2017}{26}
|
||||
\bibcite{Hassidim2013}{27}
|
||||
\bibcite{Zhang2016}{28}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {VII}Conclusion}{8}{section.7}\protected@file@percent }
|
||||
\newlabel{sec:org76c5125}{{VII}{8}{Conclusion}{section.7}{}}
|
||||
\newlabel{sec:cl}{{VII}{8}{Conclusion}{section.7}{}}
|
||||
\@writefile{toc}{\contentsline {section}{References}{8}{section*.2}\protected@file@percent }
|
172
2019-CloudCom.bbl
Normal file
172
2019-CloudCom.bbl
Normal file
|
@ -0,0 +1,172 @@
|
|||
% Generated by IEEEtran.bst, version: 1.14 (2015/08/26)
|
||||
\begin{thebibliography}{10}
|
||||
\providecommand{\url}[1]{#1}
|
||||
\csname url@samestyle\endcsname
|
||||
\providecommand{\newblock}{\relax}
|
||||
\providecommand{\bibinfo}[2]{#2}
|
||||
\providecommand{\BIBentrySTDinterwordspacing}{\spaceskip=0pt\relax}
|
||||
\providecommand{\BIBentryALTinterwordstretchfactor}{4}
|
||||
\providecommand{\BIBentryALTinterwordspacing}{\spaceskip=\fontdimen2\font plus
|
||||
\BIBentryALTinterwordstretchfactor\fontdimen3\font minus
|
||||
\fontdimen4\font\relax}
|
||||
\providecommand{\BIBforeignlanguage}[2]{{%
|
||||
\expandafter\ifx\csname l@#1\endcsname\relax
|
||||
\typeout{** WARNING: IEEEtran.bst: No hyphenation pattern has been}%
|
||||
\typeout{** loaded for the language `#1'. Using the pattern for}%
|
||||
\typeout{** the default language instead.}%
|
||||
\else
|
||||
\language=\csname l@#1\endcsname
|
||||
\fi
|
||||
#2}}
|
||||
\providecommand{\BIBdecl}{\relax}
|
||||
\BIBdecl
|
||||
|
||||
\bibitem{ShiftProject}
|
||||
{The Shift Project}, ``{Lean ICT, Pour une sobri\'et\'e num\'erique},''
|
||||
https://theshiftproject.org/article/pour-une-sobriete-numerique-rapport-shift/,
|
||||
Oct. 2018.
|
||||
|
||||
\bibitem{Cisco2019}
|
||||
Cisco, ``{Cisco Visual Networking Index: Forecast and Trends, 2017–2022},''
|
||||
White paper, Feb. 2019.
|
||||
|
||||
\bibitem{Sandvine2018}
|
||||
Sandvine, ``{The Global Internet Phenomena Report},''
|
||||
\url{https://www.sandvine.com/phenomena}, Oct. 2018.
|
||||
|
||||
\bibitem{li_end--end_2018}
|
||||
Y.~Li, A.-C. Orgerie, I.~Rodero, B.~L. Amersho, M.~Parashar, and J.-M. Menaud,
|
||||
``\BIBforeignlanguage{en}{End-to-end energy models for {Edge} {Cloud}-based
|
||||
{IoT} platforms: {Application} to data stream analysis in {IoT}},''
|
||||
\emph{\BIBforeignlanguage{en}{Future Generation Computer Systems}}, vol.~87,
|
||||
pp. 667--678, Oct. 2018.
|
||||
|
||||
\bibitem{offloading}
|
||||
K.~{Kumar} and Y.~{Lu}, ``{Cloud Computing for Mobile Users: Can Offloading
|
||||
Computation Save Energy?}'' \emph{Computer}, vol.~43, no.~4, pp. 51--56,
|
||||
2010.
|
||||
|
||||
\bibitem{Wang2016}
|
||||
K.~{Wang}, Y.~{Wang}, Y.~{Sun}, S.~{Guo}, and J.~{Wu}, ``{Green Industrial
|
||||
Internet of Things Architecture: An Energy-Efficient Perspective},''
|
||||
\emph{IEEE Communications Magazine}, vol.~54, no.~12, pp. 48--54, 2016.
|
||||
|
||||
\bibitem{Ejaz2017}
|
||||
W.~Ejaz, M.~Naeem, A.~Shahid, A.~Anpalagan, and M.~Jo, ``Efficient energy
|
||||
management for the internet of things in smart cities,'' \emph{IEEE
|
||||
Communications Magazine}, vol.~55, no.~1, pp. 84--91, 2017.
|
||||
|
||||
\bibitem{Minoli2017}
|
||||
D.~{Minoli}, K.~{Sohraby}, and B.~{Occhiogrosso}, ``{IoT Considerations,
|
||||
Requirements, and Architectures for Smart Buildings—Energy Optimization and
|
||||
Next-Generation Building Management Systems},'' \emph{IEEE Internet of Things
|
||||
Journal}, vol.~4, no.~1, pp. 269--283, 2017.
|
||||
|
||||
\bibitem{Tao2016}
|
||||
F.~Tao, Y.~Wang, Y.~Zuo, H.~Yang, and M.~Zhang, ``{Internet of Things in
|
||||
product life-cycle energy management},'' \emph{Journal of Industrial
|
||||
Information Integration}, vol.~1, pp. 26 -- 39, 2016.
|
||||
|
||||
\bibitem{jalali_fog_2016}
|
||||
F.~Jalali, K.~Hinton, R.~Ayre, T.~Alpcan, and R.~S. Tucker,
|
||||
``\BIBforeignlanguage{en}{Fog {Computing} {May} {Help} to {Save} {Energy} in
|
||||
{Cloud} {Computing}},'' \emph{\BIBforeignlanguage{en}{IEEE J. on Selected
|
||||
Areas in Communications}}, vol.~34, no.~5, pp. 1728--1739, 2016.
|
||||
|
||||
\bibitem{Sarkar2018}
|
||||
S.~{Sarkar}, S.~{Chatterjee}, and S.~{Misra}, ``{Assessment of the Suitability
|
||||
of Fog Computing in the Context of Internet of Things},'' \emph{IEEE
|
||||
Transactions on Cloud Computing}, vol.~6, no.~1, pp. 46--59, 2018.
|
||||
|
||||
\bibitem{Samie2016}
|
||||
F.~Samie, L.~Bauer, and J.~Henkel, ``Iot technologies for embedded computing: A
|
||||
survey,'' in \emph{IEEE/ACM/IFIP CODES}, 2016.
|
||||
|
||||
\bibitem{Gray2015}
|
||||
C.~{Gray}, R.~{Ayre}, K.~{Hinton}, and R.~S. {Tucker}, ``{Power consumption of
|
||||
IoT access network technologies},'' in \emph{IEEE International Conference on
|
||||
Communication Workshop (ICCW)}, 2015, pp. 2818--2823.
|
||||
|
||||
\bibitem{Nest}
|
||||
Google, ``{Nest Learning Thermostat -- Spec Sheet},''
|
||||
\url{https://nest.com/-downloads/press/documents/nest-thermostat-fact-sheet_2017.pdf},
|
||||
2017.
|
||||
|
||||
\bibitem{ns3-energywifi}
|
||||
H.~Wu, S.~Nabar, and R.~Poovendran, ``{An Energy Framework for the Network
|
||||
Simulator 3 (NS-3)},'' in \emph{International ICST Conference on Simulation
|
||||
Tools and Techniques (SIMUTools)}, 2011, pp. 222--230.
|
||||
|
||||
\bibitem{Andres2017}
|
||||
P.~{Andres-Maldonado}, P.~{Ameigeiras}, J.~{Prados-Garzon}, J.~J.
|
||||
{Ramos-Munoz}, and J.~M. {Lopez-Soler}, ``{Optimized LTE data transmission
|
||||
procedures for IoT: Device side energy consumption analysis},'' in \emph{IEEE
|
||||
International Conference on Communications Workshops (ICC Workshops)}, 2017,
|
||||
pp. 540--545.
|
||||
|
||||
\bibitem{Martinez2015}
|
||||
B.~{Martinez}, M.~{Montón}, I.~{Vilajosana}, and J.~D. {Prades}, ``{The Power
|
||||
of Models: Modeling Power Consumption for IoT Devices},'' \emph{IEEE Sensors
|
||||
Journal}, vol.~15, no.~10, pp. 5777--5789, 2015.
|
||||
|
||||
\bibitem{Ehsan}
|
||||
E.~{Ahvar}, A.-C. {Orgerie}, and A.~{Lebre}, ``Estimating energy consumption of
|
||||
cloud, fog and edge computing infrastructures,'' \emph{IEEE Trans. on Sust.
|
||||
Comp.}, 2019.
|
||||
|
||||
\bibitem{mahadevan_power_2009}
|
||||
P.~Mahadevan, P.~Sharma, S.~Banerjee, and P.~Ranganathan, ``A {Power}
|
||||
{Benchmarking} {Framework} for {Network} {Devices},'' in \emph{{NETWORKING}},
|
||||
ser. Lecture {Notes} in {Computer} {Science}, 2009, pp. 795--808.
|
||||
|
||||
\bibitem{halperin_demystifying_nodate}
|
||||
D.~Halperin, B.~Greenstein, A.~Sheth, and D.~Wetherall,
|
||||
``\BIBforeignlanguage{en}{Demystifying 802.11n {Power} {Consumption}},'' in
|
||||
\emph{\BIBforeignlanguage{en}{International Conference on Power Aware
|
||||
Computing and Systems (HotPower)}}, 2010, p.~5.
|
||||
|
||||
\bibitem{orgerie_simulation_2017}
|
||||
A.-C. Orgerie, B.~L. Amersho, T.~Haudebourg, M.~Quinson, M.~Rifai, D.~L.
|
||||
Pacheco, and L.~Lefèvre, ``Simulation {Toolbox} for {Studying} {Energy}
|
||||
{Consumption} in {Wired} {Networks},'' in \emph{{CNSM}: {International}
|
||||
{Conference} on {Network} and {Service} {Management}}, 2017, pp. 1--5.
|
||||
|
||||
\bibitem{sivaraman_profiling_2011}
|
||||
V.~Sivaraman, A.~Vishwanath, Z.~Zhao, and C.~Russell, ``Profiling per-packet
|
||||
and per-byte energy consumption in the {NetFPGA} {Gigabit} router,'' in
|
||||
\emph{IEEE INFOCOM Workshops}, 2011, pp. 331--336.
|
||||
|
||||
\bibitem{Serrano2015}
|
||||
P.~{Serrano}, A.~{Garcia-Saavedra}, G.~{Bianchi}, A.~{Banchs}, and
|
||||
A.~{Azcorra}, ``{Per-Frame Energy Consumption in 802.11 Devices and Its
|
||||
Implication on Modeling and Design},'' \emph{IEEE/ACM Trans. on Net.},
|
||||
vol.~23, no.~4, pp. 1243--1256, 2015.
|
||||
|
||||
\bibitem{cornea_studying_2014-1}
|
||||
B.~F. Cornea, A.~C. Orgerie, and L.~Lefèvre, ``Studying the energy consumption
|
||||
of data transfers in {Clouds}: the {Ecofen} approach,'' in \emph{2014 {IEEE}
|
||||
3rd {International} {Conference} on {Cloud} {Networking} ({CloudNet})}, Oct.
|
||||
2014, pp. 143--148.
|
||||
|
||||
\bibitem{shehabi_united_2016-1}
|
||||
A.~Shehabi, S.~Smith, D.~Sartor, R.~Brown, M.~Herrlin, J.~Koomey, E.~Masanet,
|
||||
N.~Horner, I.~Azevedo, and W.~Lintner, ``\BIBforeignlanguage{en}{United
|
||||
{States} {Data} {Center} {Energy} {Usage} {Report}},'' LBNL, Tech. Rep.
|
||||
LBNL--1005775, 1372902, Jun. 2016.
|
||||
|
||||
\bibitem{heinrich_predicting_2017}
|
||||
F.~C. Heinrich, T.~Cornebize, A.~Degomme, A.~Legrand, A.~Carpen-Amarie,
|
||||
S.~Hunold, A.-C. Orgerie, and M.~Quinson, ``Predicting the
|
||||
{Energy}-{Consumption} of {MPI} {Applications} at {Scale} {Using} {Only} a
|
||||
{Single} {Node},'' in \emph{IEEE Cluster Conference}, 2017, pp. 92--102.
|
||||
|
||||
\bibitem{Hassidim2013}
|
||||
A.~{Hassidim}, D.~{Raz}, M.~{Segalov}, and A.~{Shaqed}, ``{Network utilization:
|
||||
The flow view},'' in \emph{IEEE INFOCOM}, 2013, pp. 1429--1437.
|
||||
|
||||
\bibitem{Zhang2016}
|
||||
Z.~{Zhang}, Y.~{Bejerano}, and S.~{Antonakopoulos}, ``{Energy-Efficient IP Core
|
||||
Network Configuration Under General Traffic Demands},'' \emph{IEEE/ACM Trans.
|
||||
on Networking}, vol.~24, no.~2, pp. 745--758, 2016.
|
||||
|
||||
\end{thebibliography}
|
56
2019-CloudCom.blg
Normal file
56
2019-CloudCom.blg
Normal file
|
@ -0,0 +1,56 @@
|
|||
This is BibTeX, Version 0.99d (TeX Live 2019/Arch Linux)
|
||||
Capacity: max_strings=100000, hash_size=100000, hash_prime=85009
|
||||
The top-level auxiliary file: 2019-CloudCom.aux
|
||||
The style file: IEEEtran.bst
|
||||
Reallocated singl_function (elt_size=8) to 100 items from 50.
|
||||
Reallocated singl_function (elt_size=8) to 100 items from 50.
|
||||
Reallocated singl_function (elt_size=8) to 100 items from 50.
|
||||
Reallocated wiz_functions (elt_size=8) to 6000 items from 3000.
|
||||
Reallocated singl_function (elt_size=8) to 100 items from 50.
|
||||
Database file #1: references.bib
|
||||
-- IEEEtran.bst version 1.14 (2015/08/26) by Michael Shell.
|
||||
-- http://www.michaelshell.org/tex/ieeetran/bibtex/
|
||||
-- See the "IEEEtran_bst_HOWTO.pdf" manual for usage information.
|
||||
|
||||
Done.
|
||||
You've used 28 entries,
|
||||
4087 wiz_defined-function locations,
|
||||
991 strings with 13141 characters,
|
||||
and the built_in function-call counts, 22722 in all, are:
|
||||
= -- 1768
|
||||
> -- 618
|
||||
< -- 188
|
||||
+ -- 339
|
||||
- -- 112
|
||||
* -- 1115
|
||||
:= -- 3266
|
||||
add.period$ -- 56
|
||||
call.type$ -- 28
|
||||
change.case$ -- 28
|
||||
chr.to.int$ -- 438
|
||||
cite$ -- 28
|
||||
duplicate$ -- 1612
|
||||
empty$ -- 1834
|
||||
format.name$ -- 136
|
||||
if$ -- 5344
|
||||
int.to.chr$ -- 0
|
||||
int.to.str$ -- 28
|
||||
missing$ -- 301
|
||||
newline$ -- 107
|
||||
num.names$ -- 28
|
||||
pop$ -- 713
|
||||
preamble$ -- 1
|
||||
purify$ -- 0
|
||||
quote$ -- 2
|
||||
skip$ -- 1744
|
||||
stack$ -- 0
|
||||
substring$ -- 1051
|
||||
swap$ -- 1345
|
||||
text.length$ -- 42
|
||||
text.prefix$ -- 0
|
||||
top$ -- 5
|
||||
type$ -- 28
|
||||
warning$ -- 0
|
||||
while$ -- 98
|
||||
width$ -- 30
|
||||
write$ -- 289
|
622
2019-CloudCom.log
Normal file
622
2019-CloudCom.log
Normal file
|
@ -0,0 +1,622 @@
|
|||
This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Arch Linux) (preloaded format=pdflatex 2019.8.25) 16 OCT 2019 15:06
|
||||
entering extended mode
|
||||
restricted \write18 enabled.
|
||||
%&-line parsing enabled.
|
||||
**/home/loic/Documents/Git/manzerbredes/paper-lowrate-iot/2019-CloudCom.tex
|
||||
(/home/loic/Documents/Git/manzerbredes/paper-lowrate-iot/2019-CloudCom.tex
|
||||
LaTeX2e <2018-12-01>
|
||||
(/usr/share/texmf-dist/tex/latex/IEEEtran/IEEEtran.cls
|
||||
Document Class: IEEEtran 2015/08/26 V1.8b by Michael Shell
|
||||
-- See the "IEEEtran_HOWTO" manual for usage information.
|
||||
-- http://www.michaelshell.org/tex/ieeetran/
|
||||
\@IEEEtrantmpdimenA=\dimen102
|
||||
\@IEEEtrantmpdimenB=\dimen103
|
||||
\@IEEEtrantmpdimenC=\dimen104
|
||||
\@IEEEtrantmpcountA=\count80
|
||||
\@IEEEtrantmpcountB=\count81
|
||||
\@IEEEtrantmpcountC=\count82
|
||||
\@IEEEtrantmptoksA=\toks14
|
||||
LaTeX Font Info: Try loading font information for OT1+ptm on input line 503.
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/psnfss/ot1ptm.fd
|
||||
File: ot1ptm.fd 2001/06/04 font definitions for OT1/ptm.
|
||||
)
|
||||
-- Using 8.5in x 11in (letter) paper.
|
||||
-- Using PDF output.
|
||||
\@IEEEnormalsizeunitybaselineskip=\dimen105
|
||||
-- This is a 10 point document.
|
||||
\CLASSINFOnormalsizebaselineskip=\dimen106
|
||||
\CLASSINFOnormalsizeunitybaselineskip=\dimen107
|
||||
\IEEEnormaljot=\dimen108
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <5> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <5> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <7> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <7> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <8> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <8> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <9> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <9> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <10> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <10> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <11> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <11> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <12> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <12> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <17> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <17> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <20> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <20> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <24> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <24> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
\IEEEquantizedlength=\dimen109
|
||||
\IEEEquantizedlengthdiff=\dimen110
|
||||
\IEEEquantizedtextheightdiff=\dimen111
|
||||
\IEEEilabelindentA=\dimen112
|
||||
\IEEEilabelindentB=\dimen113
|
||||
\IEEEilabelindent=\dimen114
|
||||
\IEEEelabelindent=\dimen115
|
||||
\IEEEdlabelindent=\dimen116
|
||||
\IEEElabelindent=\dimen117
|
||||
\IEEEiednormlabelsep=\dimen118
|
||||
\IEEEiedmathlabelsep=\dimen119
|
||||
\IEEEiedtopsep=\skip41
|
||||
\c@section=\count83
|
||||
\c@subsection=\count84
|
||||
\c@subsubsection=\count85
|
||||
\c@paragraph=\count86
|
||||
\c@IEEEsubequation=\count87
|
||||
\abovecaptionskip=\skip42
|
||||
\belowcaptionskip=\skip43
|
||||
\c@figure=\count88
|
||||
\c@table=\count89
|
||||
\@IEEEeqnnumcols=\count90
|
||||
\@IEEEeqncolcnt=\count91
|
||||
\@IEEEsubeqnnumrollback=\count92
|
||||
\@IEEEquantizeheightA=\dimen120
|
||||
\@IEEEquantizeheightB=\dimen121
|
||||
\@IEEEquantizeheightC=\dimen122
|
||||
\@IEEEquantizeprevdepth=\dimen123
|
||||
\@IEEEquantizemultiple=\count93
|
||||
\@IEEEquantizeboxA=\box27
|
||||
\@IEEEtmpitemindent=\dimen124
|
||||
\IEEEPARstartletwidth=\dimen125
|
||||
\c@IEEEbiography=\count94
|
||||
\@IEEEtranrubishbin=\box28
|
||||
) (/usr/share/texmf-dist/tex/latex/hyperref/hyperref.sty
|
||||
Package: hyperref 2018/11/30 v6.88e Hypertext links for LaTeX
|
||||
|
||||
(/usr/share/texmf-dist/tex/generic/oberdiek/hobsub-hyperref.sty
|
||||
Package: hobsub-hyperref 2016/05/16 v1.14 Bundle oberdiek, subset hyperref (HO)
|
||||
|
||||
|
||||
(/usr/share/texmf-dist/tex/generic/oberdiek/hobsub-generic.sty
|
||||
Package: hobsub-generic 2016/05/16 v1.14 Bundle oberdiek, subset generic (HO)
|
||||
Package: hobsub 2016/05/16 v1.14 Construct package bundles (HO)
|
||||
Package: infwarerr 2016/05/16 v1.4 Providing info/warning/error messages (HO)
|
||||
Package: ltxcmds 2016/05/16 v1.23 LaTeX kernel commands for general use (HO)
|
||||
Package: ifluatex 2016/05/16 v1.4 Provides the ifluatex switch (HO)
|
||||
Package ifluatex Info: LuaTeX not detected.
|
||||
Package: ifvtex 2016/05/16 v1.6 Detect VTeX and its facilities (HO)
|
||||
Package ifvtex Info: VTeX not detected.
|
||||
Package: intcalc 2016/05/16 v1.2 Expandable calculations with integers (HO)
|
||||
Package: ifpdf 2018/09/07 v3.3 Provides the ifpdf switch
|
||||
Package: etexcmds 2016/05/16 v1.6 Avoid name clashes with e-TeX commands (HO)
|
||||
Package: kvsetkeys 2016/05/16 v1.17 Key value parser (HO)
|
||||
Package: kvdefinekeys 2016/05/16 v1.4 Define keys (HO)
|
||||
Package: pdftexcmds 2018/09/10 v0.29 Utility functions of pdfTeX for LuaTeX (HO
|
||||
)
|
||||
Package pdftexcmds Info: LuaTeX not detected.
|
||||
Package pdftexcmds Info: \pdf@primitive is available.
|
||||
Package pdftexcmds Info: \pdf@ifprimitive is available.
|
||||
Package pdftexcmds Info: \pdfdraftmode found.
|
||||
Package: pdfescape 2016/05/16 v1.14 Implements pdfTeX's escape features (HO)
|
||||
Package: bigintcalc 2016/05/16 v1.4 Expandable calculations on big integers (HO
|
||||
)
|
||||
Package: bitset 2016/05/16 v1.2 Handle bit-vector datatype (HO)
|
||||
Package: uniquecounter 2016/05/16 v1.3 Provide unlimited unique counter (HO)
|
||||
)
|
||||
Package hobsub Info: Skipping package `hobsub' (already loaded).
|
||||
Package: letltxmacro 2016/05/16 v1.5 Let assignment for LaTeX macros (HO)
|
||||
Package: hopatch 2016/05/16 v1.3 Wrapper for package hooks (HO)
|
||||
Package: xcolor-patch 2016/05/16 xcolor patch
|
||||
Package: atveryend 2016/05/16 v1.9 Hooks at the very end of document (HO)
|
||||
Package atveryend Info: \enddocument detected (standard20110627).
|
||||
Package: atbegshi 2016/06/09 v1.18 At begin shipout hook (HO)
|
||||
Package: refcount 2016/05/16 v3.5 Data extraction from label references (HO)
|
||||
Package: hycolor 2016/05/16 v1.8 Color options for hyperref/bookmark (HO)
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
Package: keyval 2014/10/28 v1.15 key=value parser (DPC)
|
||||
\KV@toks@=\toks15
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/generic/ifxetex/ifxetex.sty
|
||||
Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/latex/oberdiek/auxhook.sty
|
||||
Package: auxhook 2016/05/16 v1.4 Hooks for auxiliary files (HO)
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/latex/oberdiek/kvoptions.sty
|
||||
Package: kvoptions 2016/05/16 v3.12 Key value format for package options (HO)
|
||||
)
|
||||
\@linkdim=\dimen126
|
||||
\Hy@linkcounter=\count95
|
||||
\Hy@pagecounter=\count96
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/hyperref/pd1enc.def
|
||||
File: pd1enc.def 2018/11/30 v6.88e Hyperref: PDFDocEncoding definition (HO)
|
||||
Now handling font encoding PD1 ...
|
||||
... no UTF-8 mapping file for font encoding PD1
|
||||
)
|
||||
\Hy@SavedSpaceFactor=\count97
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/latexconfig/hyperref.cfg
|
||||
File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive
|
||||
)
|
||||
Package hyperref Info: Hyper figures OFF on input line 4519.
|
||||
Package hyperref Info: Link nesting OFF on input line 4524.
|
||||
Package hyperref Info: Hyper index ON on input line 4527.
|
||||
Package hyperref Info: Plain pages OFF on input line 4534.
|
||||
Package hyperref Info: Backreferencing OFF on input line 4539.
|
||||
Package hyperref Info: Implicit mode ON; LaTeX internals redefined.
|
||||
Package hyperref Info: Bookmarks ON on input line 4772.
|
||||
\c@Hy@tempcnt=\count98
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/url/url.sty
|
||||
\Urlmuskip=\muskip10
|
||||
Package: url 2013/09/16 ver 3.4 Verb mode for urls, etc.
|
||||
)
|
||||
LaTeX Info: Redefining \url on input line 5125.
|
||||
\XeTeXLinkMargin=\dimen127
|
||||
\Fld@menulength=\count99
|
||||
\Field@Width=\dimen128
|
||||
\Fld@charsize=\dimen129
|
||||
Package hyperref Info: Hyper figures OFF on input line 6380.
|
||||
Package hyperref Info: Link nesting OFF on input line 6385.
|
||||
Package hyperref Info: Hyper index ON on input line 6388.
|
||||
Package hyperref Info: backreferencing OFF on input line 6395.
|
||||
Package hyperref Info: Link coloring OFF on input line 6400.
|
||||
Package hyperref Info: Link coloring with OCG OFF on input line 6405.
|
||||
Package hyperref Info: PDF/A mode OFF on input line 6410.
|
||||
LaTeX Info: Redefining \ref on input line 6450.
|
||||
LaTeX Info: Redefining \pageref on input line 6454.
|
||||
\Hy@abspage=\count100
|
||||
\c@Item=\count101
|
||||
\c@Hfootnote=\count102
|
||||
)
|
||||
Package hyperref Info: Driver (autodetected): hpdftex.
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/hyperref/hpdftex.def
|
||||
File: hpdftex.def 2018/11/30 v6.88e Hyperref driver for pdfTeX
|
||||
\Fld@listcount=\count103
|
||||
\c@bookmark@seq@number=\count104
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/oberdiek/rerunfilecheck.sty
|
||||
Package: rerunfilecheck 2016/05/16 v1.8 Rerun checks for auxiliary files (HO)
|
||||
Package uniquecounter Info: New unique counter `rerunfilecheck' on input line 2
|
||||
82.
|
||||
)
|
||||
\Hy@SectionHShift=\skip44
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/latex/booktabs/booktabs.sty
|
||||
Package: booktabs 2016/04/27 v1.618033 publication quality tables
|
||||
\heavyrulewidth=\dimen130
|
||||
\lightrulewidth=\dimen131
|
||||
\cmidrulewidth=\dimen132
|
||||
\belowrulesep=\dimen133
|
||||
\belowbottomsep=\dimen134
|
||||
\aboverulesep=\dimen135
|
||||
\abovetopsep=\dimen136
|
||||
\cmidrulesep=\dimen137
|
||||
\cmidrulekern=\dimen138
|
||||
\defaultaddspace=\dimen139
|
||||
\@cmidla=\count105
|
||||
\@cmidlb=\count106
|
||||
\@aboverulesep=\dimen140
|
||||
\@belowrulesep=\dimen141
|
||||
\@thisruleclass=\count107
|
||||
\@lastruleclass=\count108
|
||||
\@thisrulewidth=\dimen142
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/latex/subfigure/subfigure.sty
|
||||
Package: subfigure 2002/03/15 v2.1.5 subfigure package
|
||||
\subfigtopskip=\skip45
|
||||
\subfigcapskip=\skip46
|
||||
\subfigcaptopadj=\dimen143
|
||||
\subfigbottomskip=\skip47
|
||||
\subfigcapmargin=\dimen144
|
||||
\subfiglabelskip=\skip48
|
||||
\c@subfigure=\count109
|
||||
\c@lofdepth=\count110
|
||||
\c@subtable=\count111
|
||||
\c@lotdepth=\count112
|
||||
|
||||
****************************************
|
||||
* Local config file subfigure.cfg used *
|
||||
****************************************
|
||||
(/usr/share/texmf-dist/tex/latex/subfigure/subfigure.cfg)
|
||||
\subfig@top=\skip49
|
||||
\subfig@bottom=\skip50
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
Package: graphicx 2017/06/01 v1.1a Enhanced LaTeX Graphics (DPC,SPQR)
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
Package: graphics 2017/06/25 v1.2c Standard LaTeX Graphics (DPC,SPQR)
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/graphics/trig.sty
|
||||
Package: trig 2016/01/03 v1.10 sin cos tan (DPC)
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
|
||||
File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration
|
||||
)
|
||||
Package graphics Info: Driver file: pdftex.def on input line 99.
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/graphics-def/pdftex.def
|
||||
File: pdftex.def 2018/01/08 v1.0l Graphics/color driver for pdftex
|
||||
))
|
||||
\Gin@req@height=\dimen145
|
||||
\Gin@req@width=\dimen146
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/latex/xcolor/xcolor.sty
|
||||
Package: xcolor 2016/05/11 v2.12 LaTeX color extensions (UK)
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/graphics-cfg/color.cfg
|
||||
File: color.cfg 2016/01/02 v1.6 sample color configuration
|
||||
)
|
||||
Package xcolor Info: Driver file: pdftex.def on input line 225.
|
||||
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1348.
|
||||
Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1352.
|
||||
Package xcolor Info: Model `RGB' extended on input line 1364.
|
||||
Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1366.
|
||||
Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1367.
|
||||
Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1368.
|
||||
Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1369.
|
||||
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1370.
|
||||
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1371.
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/latex/multirow/multirow.sty
|
||||
Package: multirow 2019/01/01 v2.4 Span multiple rows of a table
|
||||
\multirow@colwidth=\skip51
|
||||
\multirow@cntb=\count113
|
||||
\multirow@dima=\skip52
|
||||
\bigstrutjot=\dimen147
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
Package: amsmath 2018/12/01 v2.17b AMS math features
|
||||
\@mathmargin=\skip53
|
||||
|
||||
For additional information on amsmath, use the `?' option.
|
||||
(/usr/share/texmf-dist/tex/latex/amsmath/amstext.sty
|
||||
Package: amstext 2000/06/29 v2.01 AMS text
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
File: amsgen.sty 1999/11/30 v2.0 generic functions
|
||||
\@emptytoks=\toks16
|
||||
\ex@=\dimen148
|
||||
))
|
||||
(/usr/share/texmf-dist/tex/latex/amsmath/amsbsy.sty
|
||||
Package: amsbsy 1999/11/29 v1.2d Bold Symbols
|
||||
\pmbraise@=\dimen149
|
||||
)
|
||||
(/usr/share/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
Package: amsopn 2016/03/08 v2.02 operator names
|
||||
)
|
||||
\inf@bad=\count114
|
||||
LaTeX Info: Redefining \frac on input line 223.
|
||||
\uproot@=\count115
|
||||
\leftroot@=\count116
|
||||
LaTeX Info: Redefining \overline on input line 385.
|
||||
\classnum@=\count117
|
||||
\DOTSCASE@=\count118
|
||||
LaTeX Info: Redefining \ldots on input line 482.
|
||||
LaTeX Info: Redefining \dots on input line 485.
|
||||
LaTeX Info: Redefining \cdots on input line 606.
|
||||
\Mathstrutbox@=\box29
|
||||
\strutbox@=\box30
|
||||
\big@size=\dimen150
|
||||
LaTeX Font Info: Redeclaring font encoding OML on input line 729.
|
||||
LaTeX Font Info: Redeclaring font encoding OMS on input line 730.
|
||||
\macc@depth=\count119
|
||||
\c@MaxMatrixCols=\count120
|
||||
\dotsspace@=\muskip11
|
||||
\c@parentequation=\count121
|
||||
\dspbrk@lvl=\count122
|
||||
\tag@help=\toks17
|
||||
\row@=\count123
|
||||
\column@=\count124
|
||||
\maxfields@=\count125
|
||||
\andhelp@=\toks18
|
||||
\eqnshift@=\dimen151
|
||||
\alignsep@=\dimen152
|
||||
\tagshift@=\dimen153
|
||||
\tagwidth@=\dimen154
|
||||
\totwidth@=\dimen155
|
||||
\lineht@=\dimen156
|
||||
\@envbody=\toks19
|
||||
\multlinegap=\skip54
|
||||
\multlinetaggap=\skip55
|
||||
\mathdisplay@stack=\toks20
|
||||
LaTeX Info: Redefining \[ on input line 2844.
|
||||
LaTeX Info: Redefining \] on input line 2845.
|
||||
) (./2019-CloudCom.aux)
|
||||
\openout1 = `2019-CloudCom.aux'.
|
||||
|
||||
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 28.
|
||||
LaTeX Font Info: ... okay on input line 28.
|
||||
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 28.
|
||||
LaTeX Font Info: ... okay on input line 28.
|
||||
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 28.
|
||||
LaTeX Font Info: ... okay on input line 28.
|
||||
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 28.
|
||||
LaTeX Font Info: ... okay on input line 28.
|
||||
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 28.
|
||||
LaTeX Font Info: ... okay on input line 28.
|
||||
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 28.
|
||||
LaTeX Font Info: ... okay on input line 28.
|
||||
LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 28.
|
||||
LaTeX Font Info: ... okay on input line 28.
|
||||
|
||||
-- Lines per column: 56 (exact).
|
||||
\AtBeginShipoutBox=\box31
|
||||
Package hyperref Info: Link coloring OFF on input line 28.
|
||||
(/usr/share/texmf-dist/tex/latex/hyperref/nameref.sty
|
||||
Package: nameref 2016/05/21 v2.44 Cross-referencing by name of section
|
||||
|
||||
(/usr/share/texmf-dist/tex/generic/oberdiek/gettitlestring.sty
|
||||
Package: gettitlestring 2016/05/16 v1.5 Cleanup title references (HO)
|
||||
)
|
||||
\c@section@level=\count126
|
||||
)
|
||||
LaTeX Info: Redefining \ref on input line 28.
|
||||
LaTeX Info: Redefining \pageref on input line 28.
|
||||
LaTeX Info: Redefining \nameref on input line 28.
|
||||
|
||||
(./2019-CloudCom.out) (./2019-CloudCom.out)
|
||||
\@outlinefile=\write3
|
||||
\openout3 = `2019-CloudCom.out'.
|
||||
|
||||
|
||||
(/usr/share/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
|
||||
[Loading MPS to PDF converter (version 2006.09.02).]
|
||||
\scratchcounter=\count127
|
||||
\scratchdimen=\dimen157
|
||||
\scratchbox=\box32
|
||||
\nofMPsegments=\count128
|
||||
\nofMParguments=\count129
|
||||
\everyMPshowfont=\toks21
|
||||
\MPscratchCnt=\count130
|
||||
\MPscratchDim=\dimen158
|
||||
\MPnumerator=\count131
|
||||
\makeMPintoPDFobject=\count132
|
||||
\everyMPtoPDFconversion=\toks22
|
||||
) (/usr/share/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty
|
||||
Package: epstopdf-base 2016/05/15 v2.6 Base part for package epstopdf
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/oberdiek/grfext.sty
|
||||
Package: grfext 2016/05/16 v1.2 Manage graphics extensions (HO)
|
||||
)
|
||||
Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4
|
||||
38.
|
||||
Package grfext Info: Graphics extension search list:
|
||||
(grfext) [.pdf,.png,.jpg,.mps,.jpeg,.jbig2,.jb2,.PDF,.PNG,.JPG,.JPE
|
||||
G,.JBIG2,.JB2,.eps]
|
||||
(grfext) \AppendGraphicsExtensions on input line 456.
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
|
||||
File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv
|
||||
e
|
||||
))
|
||||
LaTeX Font Info: Try loading font information for OMS+ptm on input line 31.
|
||||
|
||||
(/usr/share/texmf-dist/tex/latex/psnfss/omsptm.fd
|
||||
File: omsptm.fd
|
||||
)
|
||||
LaTeX Font Info: Font shape `OMS/ptm/m/n' in size <10> not available
|
||||
(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 31.
|
||||
|
||||
Underfull \hbox (badness 1917) in paragraph at lines 129--133
|
||||
[]\OT1/ptm/m/n/10 an anal-y-sis of the en-ergy con-sump-tion of a low-
|
||||
[]
|
||||
|
||||
[1{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}
|
||||
|
||||
|
||||
] [2]
|
||||
<./plots/home.png, id=144, 314.76749pt x 247.48161pt>
|
||||
File: ./plots/home.png Graphic file (type png)
|
||||
<use ./plots/home.png>
|
||||
Package pdftex.def Info: ./plots/home.png used on input line 273.
|
||||
(pdftex.def) Requested size: 151.20154pt x 118.88045pt.
|
||||
<./plots/parts2.png, id=149, 456.43202pt x 136.297pt>
|
||||
File: ./plots/parts2.png Graphic file (type png)
|
||||
<use ./plots/parts2.png>
|
||||
Package pdftex.def Info: ./plots/parts2.png used on input line 301.
|
||||
(pdftex.def) Requested size: 214.20154pt x 63.96393pt.
|
||||
[3 <./plots/home.png> <./plots/parts2.png>]
|
||||
<./plots/g5k-xp.png, id=177, 167.73541pt x 172.33615pt>
|
||||
File: ./plots/g5k-xp.png Graphic file (type png)
|
||||
<use ./plots/g5k-xp.png>
|
||||
Package pdftex.def Info: ./plots/g5k-xp.png used on input line 408.
|
||||
(pdftex.def) Requested size: 151.20154pt x 155.34827pt.
|
||||
<./plots/numberSensors-WIFINET.png, id=184, 361.35pt x 289.08pt>
|
||||
File: ./plots/numberSensors-WIFINET.png Graphic file (type png)
|
||||
<use ./plots/numberSensors-WIFINET.png>
|
||||
Package pdftex.def Info: ./plots/numberSensors-WIFINET.png used on input line
|
||||
497.
|
||||
(pdftex.def) Requested size: 163.79846pt x 131.03757pt.
|
||||
[4 <./plots/g5k-xp.png>]
|
||||
<./plots/vmSize-cloud.png, id=199, 433.62pt x 216.81pt>
|
||||
File: ./plots/vmSize-cloud.png Graphic file (type png)
|
||||
<use ./plots/vmSize-cloud.png>
|
||||
Package pdftex.def Info: ./plots/vmSize-cloud.png used on input line 516.
|
||||
(pdftex.def) Requested size: 309.60315pt x 154.80954pt.
|
||||
<./plots/sensorsNumberLine-cloud.png, id=207, 289.08pt x 325.215pt>
|
||||
File: ./plots/sensorsNumberLine-cloud.png Graphic file (type png)
|
||||
<use ./plots/sensorsNumberLine-cloud.png>
|
||||
Package pdftex.def Info: ./plots/sensorsNumberLine-cloud.png used on input lin
|
||||
e 566.
|
||||
(pdftex.def) Requested size: 138.60077pt x 155.92278pt.
|
||||
<./plots/WPS-cloud.png, id=208, 289.08pt x 289.08pt>
|
||||
File: ./plots/WPS-cloud.png Graphic file (type png)
|
||||
<use ./plots/WPS-cloud.png>
|
||||
Package pdftex.def Info: ./plots/WPS-cloud.png used on input line 574.
|
||||
(pdftex.def) Requested size: 138.60077pt x 138.59802pt.
|
||||
<plots/sendInterval-cloud.png, id=210, 433.62pt x 216.81pt>
|
||||
File: plots/sendInterval-cloud.png Graphic file (type png)
|
||||
<use plots/sendInterval-cloud.png>
|
||||
Package pdftex.def Info: plots/sendInterval-cloud.png used on input line 590.
|
||||
(pdftex.def) Requested size: 309.60315pt x 154.80954pt.
|
||||
|
||||
Overfull \hbox (6.35864pt too wide) detected at line 631
|
||||
[]
|
||||
[]
|
||||
|
||||
[5 <./plots/numberSensors-WIFINET.png (PNG copy)>] [6 <./plots/vmSize-cloud.png
|
||||
(PNG copy)> <./plots/sensorsNumberLine-cloud.png> <./plots/WPS-cloud.png>]
|
||||
Underfull \hbox (badness 3492) in paragraph at lines 709--717
|
||||
[]\OT1/ptm/m/n/10 Where $\OML/cmm/m/it/10 P[]$ \OT1/ptm/m/n/10 is the static po
|
||||
wer con-sump-tion of
|
||||
[]
|
||||
|
||||
<plots/final.png, id=247, 578.16pt x 397.485pt>
|
||||
File: plots/final.png Graphic file (type png)
|
||||
<use plots/final.png>
|
||||
Package pdftex.def Info: plots/final.png used on input line 733.
|
||||
(pdftex.def) Requested size: 226.79846pt x 155.92223pt.
|
||||
[7 <./plots/sendInterval-cloud.png (PNG copy)> <./plots/final.png (PNG copy)>]
|
||||
(./2019-CloudCom.bbl
|
||||
Underfull \hbox (badness 4266) in paragraph at lines 25--28
|
||||
[]\OT1/ptm/m/n/8 The Shift Project, ``Lean ICT, Pour une so-bri[]et[]e num[]eri
|
||||
que,''
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 25--28
|
||||
\OT1/ptm/m/n/8 https://theshiftproject.org/article/pour-une-sobriete-numerique-
|
||||
rapport-
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 4886) in paragraph at lines 30--32
|
||||
[]\OT1/ptm/m/n/8 Cisco, ``Cisco Vi-sual Net-work-ing In-dex: Fore-cast and Tren
|
||||
ds,
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 1389) in paragraph at lines 34--36
|
||||
[]\OT1/ptm/m/n/8 Sandvine, ``The Global In-ter-net Phe-nom-ena Re-port,'' []$ht
|
||||
tps : / / www .
|
||||
[]
|
||||
|
||||
** WARNING: IEEEtran.bst: No hyphenation pattern has been
|
||||
** loaded for the language `en'. Using the pattern for
|
||||
** the default language instead.
|
||||
** WARNING: IEEEtran.bst: No hyphenation pattern has been
|
||||
** loaded for the language `en'. Using the pattern for
|
||||
** the default language instead.
|
||||
** WARNING: IEEEtran.bst: No hyphenation pattern has been
|
||||
** loaded for the language `en'. Using the pattern for
|
||||
** the default language instead.
|
||||
** WARNING: IEEEtran.bst: No hyphenation pattern has been
|
||||
** loaded for the language `en'. Using the pattern for
|
||||
** the default language instead.
|
||||
|
||||
Underfull \hbox (badness 2809) in paragraph at lines 91--94
|
||||
[]\OT1/ptm/m/n/8 Google, ``Nest Learn-ing Ther-mo-stat -- Spec Sheet,'' []$http
|
||||
s : / / nest .
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 91--94
|
||||
\OT1/ptm/m/n/8 com / -[]downloads / press / documents / nest-[]thermostat-[]fac
|
||||
t-[]sheet[]2017 . pdf$[],
|
||||
[]
|
||||
|
||||
** WARNING: IEEEtran.bst: No hyphenation pattern has been
|
||||
** loaded for the language `en'. Using the pattern for
|
||||
** the default language instead.
|
||||
** WARNING: IEEEtran.bst: No hyphenation pattern has been
|
||||
** loaded for the language `en'. Using the pattern for
|
||||
** the default language instead.
|
||||
** WARNING: IEEEtran.bst: No hyphenation pattern has been
|
||||
** loaded for the language `en'. Using the pattern for
|
||||
** the default language instead.
|
||||
)
|
||||
|
||||
** Conference Paper **
|
||||
Before submitting the final camera ready copy, remember to:
|
||||
|
||||
1. Manually equalize the lengths of two columns on the last page
|
||||
of your paper;
|
||||
|
||||
2. Ensure that any PostScript and/or PDF output post-processing
|
||||
uses only Type 1 fonts and that every step in the generation
|
||||
process uses the appropriate paper size.
|
||||
|
||||
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 811.
|
||||
[8]
|
||||
Package atveryend Info: Empty hook `AfterLastShipout' on input line 811.
|
||||
(./2019-CloudCom.aux)
|
||||
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 811.
|
||||
Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 811.
|
||||
Package rerunfilecheck Info: File `2019-CloudCom.out' has not changed.
|
||||
(rerunfilecheck) Checksum: 14EDF505A77B0488CA6C90929BF4F9E7;955.
|
||||
Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 811.
|
||||
)
|
||||
Here is how much of TeX's memory you used:
|
||||
7329 strings out of 492623
|
||||
109553 string characters out of 6135669
|
||||
220918 words of memory out of 5000000
|
||||
11096 multiletter control sequences out of 15000+600000
|
||||
40208 words of font info for 77 fonts, out of 8000000 for 9000
|
||||
1141 hyphenation exceptions out of 8191
|
||||
28i,10n,35p,337b,391s stack positions out of 5000i,500n,10000p,200000b,80000s
|
||||
{/usr/share/texmf-dist/fonts/enc/dvips/base/8r.enc}</usr/share/texmf-dist/fon
|
||||
ts/type1/public/amsfonts/cm/cmmi10.pfb></usr/share/texmf-dist/fonts/type1/publi
|
||||
c/amsfonts/cm/cmmi6.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/c
|
||||
mmi7.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi8.pfb></usr/
|
||||
share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/texmf-dis
|
||||
t/fonts/type1/public/amsfonts/cm/cmr7.pfb></usr/share/texmf-dist/fonts/type1/pu
|
||||
blic/amsfonts/cm/cmr8.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm
|
||||
/cmsy10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy7.pfb></u
|
||||
sr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy8.pfb></usr/share/texmf-
|
||||
dist/fonts/type1/urw/times/utmb8a.pfb></usr/share/texmf-dist/fonts/type1/urw/ti
|
||||
mes/utmbi8a.pfb></usr/share/texmf-dist/fonts/type1/urw/times/utmr8a.pfb></usr/s
|
||||
hare/texmf-dist/fonts/type1/urw/times/utmri8a.pfb>
|
||||
Output written on 2019-CloudCom.pdf (8 pages, 696467 bytes).
|
||||
PDF statistics:
|
||||
329 PDF objects out of 1000 (max. 8388607)
|
||||
288 compressed objects within 3 object streams
|
||||
70 named destinations out of 1000 (max. 500000)
|
||||
166 words of extra memory for PDF output out of 10000 (max. 10000000)
|
||||
|
15
2019-CloudCom.out
Normal file
15
2019-CloudCom.out
Normal file
|
@ -0,0 +1,15 @@
|
|||
\BOOKMARK [1][-]{section.1}{Introduction}{}% 1
|
||||
\BOOKMARK [1][-]{section.2}{Related Work}{}% 2
|
||||
\BOOKMARK [2][-]{subsection.2.1}{Energy consumption of IoT devices}{section.2}% 3
|
||||
\BOOKMARK [2][-]{subsection.2.2}{Energy consumption of network and cloud infrastructures}{section.2}% 4
|
||||
\BOOKMARK [1][-]{section.3}{Characterization of low-bandwidth IoT applications}{}% 5
|
||||
\BOOKMARK [1][-]{section.4}{Experimental setup}{}% 6
|
||||
\BOOKMARK [2][-]{subsection.4.1}{IoT Part}{section.4}% 7
|
||||
\BOOKMARK [2][-]{subsection.4.2}{Network Part}{section.4}% 8
|
||||
\BOOKMARK [2][-]{subsection.4.3}{Cloud Part}{section.4}% 9
|
||||
\BOOKMARK [1][-]{section.5}{Evaluation}{}% 10
|
||||
\BOOKMARK [2][-]{subsection.5.1}{IoT and Network Power Consumption}{section.5}% 11
|
||||
\BOOKMARK [2][-]{subsection.5.2}{Cloud Energy Consumption}{section.5}% 12
|
||||
\BOOKMARK [1][-]{section.6}{End-to-End Consumption Model}{}% 13
|
||||
\BOOKMARK [1][-]{section.7}{Conclusion}{}% 14
|
||||
\BOOKMARK [1][-]{section*.2}{References}{}% 15
|
BIN
2019-CloudCom.pdf
Normal file
BIN
2019-CloudCom.pdf
Normal file
Binary file not shown.
|
@ -1196,7 +1196,7 @@ Our usecase: for one sensor
|
|||
data300=data%>%filter(nbSensors==300)%>%mutate(energy=mean(energy)) %>% slice(1L)
|
||||
dataCloud=rbind(data20,data100,data300)%>%mutate(sensorsNumber=nbSensors)%>%mutate(type="Cloud")%>%select(sensorsNumber,energy,type)
|
||||
dataCloud=bind_rows(dataCloud,tibble(sensorsNumber=1,energy=approx(data20,data100,1),type="Cloud"))
|
||||
dataCloud=dataCloud%>%mutate(energy=energy/7) # Divide by 7 because 14 core so 1 machine can host 14 vm but we use redundancy (2VM for 1app)
|
||||
dataCloud=dataCloud%>%mutate(energy=energy/8) # Divide by 8 because 16 core so 1 machine can host 16 vm but we use redundancy (2VM for 1app)
|
||||
|
||||
# Network
|
||||
data=loadData("./logs/ns3/last/data.csv")
|
||||
|
@ -1225,12 +1225,16 @@ Our usecase: for one sensor
|
|||
xlab("Sensors Number")+ylab("Power Consumption (W)")+guides(fill=guide_legend(title="System Part"))
|
||||
p=applyTheme(p)+theme(text = element_text(size=16))
|
||||
ggsave("plots/final.png",dpi=90,width=8,height=5.5)
|
||||
write.csv(last_plot()$data,file=paste0("/home/loic/aa",".csv"))
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
[[file:plots/final.png]]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Impact of vm size
|
||||
#+BEGIN_SRC R :noweb yes :results graphics :noweb yes :file plots/vmSize-cloud.png
|
||||
<<RUtils>>
|
||||
|
@ -1343,7 +1347,7 @@ Our usecase: for one sensor
|
|||
p=applyTheme(p)
|
||||
ggsave("plots/sendInterval-cloud.png",dpi=120,height=3,width=6)
|
||||
#+END_SRC
|
||||
|
||||
|
||||
#+RESULTS:
|
||||
[[file:plots/sendInterval-cloud.png]]
|
||||
|
||||
|
|
717
2019-ICA3PP.tex
Normal file
717
2019-ICA3PP.tex
Normal file
|
@ -0,0 +1,717 @@
|
|||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[conference]{llncs}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{booktabs}
|
||||
\usepackage{subfigure}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{xcolor}
|
||||
\author{
|
||||
Loic Guegan and
|
||||
Anne-Cécile Orgerie\\
|
||||
}
|
||||
\institute{Univ Rennes, Inria, CNRS, IRISA, Rennes, France\\
|
||||
Emails: loic.guegan@irisa.fr, anne-cecile.orgerie@irisa.fr
|
||||
}
|
||||
\date{\today}
|
||||
\title{Estimating the end-to-end energy consumption of low-bandwidth IoT applications for WiFi devices}
|
||||
\hypersetup{
|
||||
pdfauthor={},
|
||||
pdftitle={Estimating the end-to-end energy consumption of low-bandwidth IoT applications for WiFi devices},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 26.2 (Org mode 9.1.9)},
|
||||
pdflang={English}}
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
\newcommand{\hl}[1]{\textcolor{red}{#1}}
|
||||
|
||||
\begin{abstract}
|
||||
Information and Communication Technology takes a growing part in the
|
||||
worldwide energy consumption. One of the root causes of this increase
|
||||
lies in the multiplication of connected devices. Each object of the
|
||||
Internet-of-Things often does not consume much energy by itself. Yet,
|
||||
their number and the infrastructures they require to properly work
|
||||
have leverage. In this paper, we combine simulations and real
|
||||
measurements to study the energy impact of IoT devices. In particular,
|
||||
we analyze the energy consumption of Cloud and telecommunication
|
||||
infrastructures induced by the utilization of connected devices, And
|
||||
we propose an end-to-end energy consumption model for these devices.
|
||||
\end{abstract}
|
||||
|
||||
|
||||
\section{Introduction}
|
||||
\label{sec:org3cd850c}
|
||||
In 2018, Information and Communication Technology (ICT) was estimated
|
||||
to absorb around 3\% of the global energy consumption
|
||||
\cite{ShiftProject}. This consumption is estimated to grow at a rate
|
||||
of 9\% per year \cite{ShiftProject}. This alarming growth is explained
|
||||
by the fast emergence of numerous applications and new ICT
|
||||
devices. These devices supply services for smart building, smart
|
||||
factories and smart cities for instance. Through connected sensors
|
||||
producing data, actuators interacting with their environment and
|
||||
communication means -- all being parts of the Internet of Things (IoT)
|
||||
-- they provide optimized decisions.
|
||||
|
||||
This increase in number of devices implies an increase in the energy
|
||||
needed to manufacture and utilize them. Yet, the overall energy bill
|
||||
of IoT also comprises indirect costs, as it relies on computing and
|
||||
networking infrastructures that consume energy to enable smart
|
||||
services. Indeed, IoT devices communicate with Cloud computing
|
||||
infrastructures to store, analyze and share their data.
|
||||
|
||||
In February 2019, a report by Cisco stated that ``IoT connections will
|
||||
represent more than half (14.6 billion) of all global connected
|
||||
devices and connections (28.5 billion) by 2022" \cite{Cisco2019}. This
|
||||
will represent more than 6\% of global IP traffic in 2022, against 3\%
|
||||
in 2017 \cite{Cisco2019}. This increasing impact of IoT devices on
|
||||
Internet connections induces a growing weight on ICT energy
|
||||
consumption.
|
||||
|
||||
The energy consumption of IoT devices themselves is only the top of
|
||||
the iceberg: their use induce energy costs in communication and cloud
|
||||
infrastructures. In this paper, we estimate the overall energy
|
||||
consumption of an IoT device environment by combining simulations and
|
||||
real measurements. We focus on a given application with low bandwidth
|
||||
requirement and we evaluate its overall energy consumption: from the
|
||||
device, through telecommunication networks, and up to the Cloud data
|
||||
center hosting the application. From this analysis, we derive an
|
||||
end-to-end energy consumption model that can be used to assess the
|
||||
consumption of other IoT devices.
|
||||
|
||||
While some IoT devices produce a lot of data, like smart vehicles for
|
||||
instance, many others generate only a small amount of data, like smart
|
||||
meters. However, the scale matters here: many small devices can end up
|
||||
producing big data volumes. As an example, according to a report
|
||||
published by Sandvine in October 2018, the Google Nest Thermostat is
|
||||
the most significant IoT device in terms of worldwide connections: it
|
||||
represents 0.16\% of all connections, ranging 55th on the list of
|
||||
connections \cite{Sandvine2018}. As a comparison, the voice assistants
|
||||
Alexa and Siri are respectively 97th and 102nd with 0.05\% of all
|
||||
connections \cite{Sandvine2018}. This example highlights the growing
|
||||
importance of low-bandwidth IoT applications on Internet
|
||||
infrastructures, and consequently on their energy consumption.
|
||||
|
||||
In this paper, we focus on IoT devices for low-bandwidth applications
|
||||
such as smart meters or smart sensors. These devices send few
|
||||
data periodically to cloud servers, either to store them or to get
|
||||
computing power and take decisions. This is a first step towards a
|
||||
comprehensive characterization of the global IoT energy
|
||||
footprint. While few studies address the energy consumption of
|
||||
high-bandwidth IoT applications \cite{li_end--end_2018}, to the best
|
||||
of our knowledge, none of them targets low-bandwidth applications,
|
||||
despite their growing importance on the Internet infrastructures.
|
||||
|
||||
Low-bandwidth IoT applications, such as the Nest Thermostat, often
|
||||
relies on sensors powered by batteries. For such sensors, reducing
|
||||
their energy consumption is a critical target. Yet, we argue that
|
||||
end-to-end energy models are required to estimate the overall impact
|
||||
of IoT devices, and to understand how to reduce their complete energy
|
||||
consumption. Without such models, one could optimize the consumption
|
||||
of on-battery devices at a heavier cost for cloud servers and
|
||||
networking infrastructures, resulting on an higher overall energy
|
||||
consumption. Using end-to-end models could prevent these unwanted
|
||||
effects.
|
||||
|
||||
Our contributions include:
|
||||
\begin{itemize}
|
||||
\item a characterization of low-bandwidth IoT applications;
|
||||
\item an analysis of the energy consumption of a low-bandwidth IoT
|
||||
application including the energy consumption of the WiFi IoT device
|
||||
and the consumption induced by its utilization on the Cloud and
|
||||
telecommunication infrastructures;
|
||||
\item an end-to-end energy model for low-bandwidth IoT applications
|
||||
relying on WiFi devices.
|
||||
\end{itemize}
|
||||
|
||||
The paper is organized as follows. Section \ref{sec:sota} presents the
|
||||
state of the art. The low-bandwidth IoT application is characterized
|
||||
in Section \ref{sec:usec}, and details on its architecture are
|
||||
provided in Section \ref{sec:model}. Section \ref{sec:eval} provides
|
||||
our experimental results combining real measurements and
|
||||
simulations. Section \ref{sec:discuss} discusses the key findings an
|
||||
the end-to-end energy model. Finally, Section \ref{sec:cl} concludes
|
||||
this work and presents future work.
|
||||
|
||||
|
||||
|
||||
\section{Related Work}
|
||||
\label{sec:org78a494a}
|
||||
\label{sec:sota}
|
||||
\subsection{Energy consumption of IoT devices}
|
||||
\label{sec:orgb12df93}
|
||||
The multiplication of smart devices and smart applications pushes the
|
||||
limits of Internet: IoT is now used everywhere for home automation,
|
||||
smart agriculture, e-health, smart cities, logistics, smart grids,
|
||||
smart buildings, etc. \cite{Wang2016,Ejaz2017,Minoli2017}. IoT devices
|
||||
are typically used to optimize processes and the envisioned
|
||||
application domains include the energy distribution and management. It
|
||||
can for instance help the energy management of product life-cycle
|
||||
\cite{Tao2016}. Yet, few studies address the impact of IoT itself on
|
||||
global energy consumption \cite{jalali_fog_2016,li_end--end_2018} or
|
||||
CO2 emissions \cite{Sarkar2018}.
|
||||
|
||||
The underlying architecture of these smart applications usually
|
||||
includes sensing devices, cloud servers, user applications and
|
||||
telecommunication networks. Concerning the computing part, the cloud
|
||||
servers can either be located on Cloud data centers, on Fog
|
||||
infrastructures located at the network edge, or on home gateways
|
||||
\cite{Wang2016}. Various network technologies are employed by IoT
|
||||
devices to communicate with their nearby gateway; either wired
|
||||
networks with Ethernet or wireless networks: WiFi, Bluetooth, Near
|
||||
Field Communication (NFC), ZigBee, cellular network (like 3G, LTE, 4G),
|
||||
Low Power Wide Area Network (LPWAN),
|
||||
etc. \cite{Samie2016,Gray2015}. The chosen technology depends on the
|
||||
smart device characteristics and the targeted communication
|
||||
performance. The Google Nest Thermostat can for instance use WiFi,
|
||||
802.15.4 and Bluetooth \cite{Nest}. In this paper, we focus on WiFi as
|
||||
it is broadly available and employed by IoT devices
|
||||
\cite{Samie2016,ns3-energywifi}.
|
||||
|
||||
Several works aim at reducing the energy consumption of the device
|
||||
transmission \cite{Andres2017} or improving the energy efficiency of
|
||||
the access network technologies \cite{Gray2015}. An extensive
|
||||
literature exists on increasing the lifetime of battery-based wireless
|
||||
sensor networks \cite{Wang2016}. Yet, IoT devices present more
|
||||
diversity than typical wireless sensors in terms of hardware
|
||||
characteristics, communication means and data production patterns.
|
||||
|
||||
Based on real measurements, previous studies have proposed energy
|
||||
models for IoT devices. Yet, these models are specific to a given kind
|
||||
of IoT device or a given transmission technology.
|
||||
Martinez et al. provide energy consumption measurements for wireless
|
||||
sensor networks using SIGFOX transmissions and employed for
|
||||
smart-parking systems \cite{Martinez2015}. Wu et al. implement an
|
||||
energy model for WiFi devices in the well-known ns3 network simulator
|
||||
\cite{ns3-energywifi}.
|
||||
|
||||
|
||||
\subsection{Energy consumption of network and cloud infrastructures}
|
||||
\label{sec:org40352c8}
|
||||
IoT architecture rely on telecommunication networks and Cloud
|
||||
infrastructures to provide services. The data produced by IoT devices
|
||||
are stored and exploited by servers located either in Cloud data
|
||||
centers or Fog edge sites. While studies exist on the energy
|
||||
consumption of network and cloud infrastructures in general
|
||||
\cite{Ehsan}, they do not consider the specific case of IoT devices.
|
||||
To the best of our knowledge, no study estimates the direct impact of
|
||||
IoT applications on the energy consumption of these infrastructures.
|
||||
|
||||
Most work focusing on energy consumption, Cloud architecture and IoT
|
||||
applications tries to answer the question: where to locate data
|
||||
processing in order to save energy
|
||||
\cite{jalali_fog_2016}, to reduce the CO2 impact \cite{Sarkar2018}, or
|
||||
to optimize renewable energy consumption \cite{li_end--end_2018}.
|
||||
|
||||
In both cases, the network and cloud infrastructures, attributing the
|
||||
energy consumption to a given user or application is a challenging
|
||||
task. The complexity comes from the shared nature of these
|
||||
infrastructures: a given Ethernet port in the core of the network
|
||||
processes many packets coming from a high number of sources
|
||||
\cite{jalali_fog_2016}. Moreover, the employed equipment is not power
|
||||
proportional: servers and routers consume consequent amounts of
|
||||
energy while being idle
|
||||
\cite{mahadevan_power_2009,li_end--end_2018}.
|
||||
The power consumed by a device is divided into two parts: a dynamic
|
||||
part that varies with traffic or amount of computation to process, and
|
||||
a static part that is constant and dissipated even while being idle
|
||||
\cite{Ehsan}. This static part implies that a consequent energy cost
|
||||
of running an application on a server is due to the device being
|
||||
simply powered on. Consequently, sharing these static energy costs
|
||||
among all the concerned users requires an end-to-end model
|
||||
\cite{li_end--end_2018}.
|
||||
|
||||
In this paper, we focus on IoT devices using WiFi transmission and
|
||||
generating low data volumes. Our model, extracted from real
|
||||
measurements and simulations, can be adapted to other kinds of devices
|
||||
and transmission technologies.
|
||||
|
||||
|
||||
|
||||
\section{Characterization of low-bandwidth IoT applications}
|
||||
\label{sec:orgfab80c8}
|
||||
\label{sec:usec}
|
||||
|
||||
In this section, we detail the characteristics of the considered IoT
|
||||
application. While the derived model is more generic, we focus on a
|
||||
given application to obtain a precise use-case with accurate power
|
||||
consumption measurements.
|
||||
|
||||
The Google Nest Thermostat relies on five sensors: temperature,
|
||||
humidity, near-field activity, far-field activity and ambient light
|
||||
\cite{Nest}. Periodical measurements, sent through wireless
|
||||
communications on the Internet, are stored on Google data centers and
|
||||
processed to learn the home inhabitants habits. The learned behavior
|
||||
is employed to automatically adjust the home temperature managed by
|
||||
heating and cooling systems.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.5\linewidth]{./plots/home.png}
|
||||
\caption{Overview of IoT devices.}
|
||||
\label{fig:IoTdev}
|
||||
\end{figure}
|
||||
|
||||
Each IoT device senses periodically its environment. Then, it sends
|
||||
the produced data through WiFi (in our context) to its gateway or
|
||||
Access Point (AP). The AP is in charge of transmitting the data to the
|
||||
cloud using the Internet. Figure \ref{fig:IoTdev} illustrates this
|
||||
architecture. Several IoT devices can share the same AP in a
|
||||
home. We consider low-bandwidth applications where devices produces
|
||||
several network packets during each sensing period. The transmitting
|
||||
frequency can vary from one to several packet sent per minute
|
||||
\cite{Cisco2019}.
|
||||
|
||||
We consider that the link between the AP and the Cloud is composed of
|
||||
several network switches and routers using Ethernet as shown in Figure
|
||||
\ref{fig:parts}. The number of routers on the path depends on the
|
||||
location of the server, either in a Cloud data center or in a Fog site
|
||||
at the edge of the network.
|
||||
|
||||
We assume that the server hosting the application data for the users
|
||||
belongs to a shared cloud facility with classical service level
|
||||
agreement (SLA). The facility provides redundant storage and computing
|
||||
means as virtual machines (VMs). A server can host several VMs at the
|
||||
same time.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.6\linewidth]{./plots/parts2.png}
|
||||
\caption{Overview of the IoT architecture.}
|
||||
\label{fig:parts}
|
||||
\end{figure}
|
||||
|
||||
In the following, we describe the experimental setup, the results and
|
||||
the end-to-end model. For all these steps, we decompose the overall
|
||||
IoT architecture into three parts: the IoT device part, the networking
|
||||
part and the cloud part, as displayed on Figure \ref{fig:parts}.
|
||||
|
||||
|
||||
\section{Experimental setup}
|
||||
\label{sec:org7832488}
|
||||
\label{sec:model}
|
||||
In this section, we describe the experimental setup employed to
|
||||
acquire energy measurements for each of the three parts of our
|
||||
system model. The IoT and the network parts are modeled
|
||||
through simulations. The Cloud part is modeled using real
|
||||
servers connected to wattmeters. In this way, it is possible to
|
||||
evaluate the end-to-end energy consumption of the system.
|
||||
|
||||
\subsection{IoT Part}
|
||||
\label{sec:org844d4c9}
|
||||
In the first place, the IoT part is composed of several sensors connected to an Access Point (AP)
|
||||
which form a cell. This cell is studied using the ns3 network
|
||||
simulator. In the experimental scenario, we setup
|
||||
between 5 and 15 sensors connected to the AP using WiFi 5GHz 802.11n. The node are placed
|
||||
randomly in a rectangle of \(400m^2\) around the AP which corresponds
|
||||
to a typical use case for a home environment. All
|
||||
the cell nodes employ the default WIFI energy model provided by ns3. The different
|
||||
energy values used by the energy model are provided in Table \ref{tab:params}. These parameters
|
||||
were extracted from previous work\cite{halperin_demystifying_nodate,li_end--end_2018} On
|
||||
IEEE 802.11n. Besides, we suppose that the energy source of each
|
||||
nodes is not limited during the experiments. Thus each node
|
||||
can communicate until the end of all the simulations.
|
||||
|
||||
As a scenario, sensors send 192 bits packets to the AP composed of: \textbf{1)} A 128 bits
|
||||
sensors id \textbf{2)} A 32 bits integer representing the temperature \textbf{3)} An integer
|
||||
timestamp representing the temperature sensing date. They are stored as time series. The data are
|
||||
transmitted immediately at each sensing interval \(I\) that we vary from 1s to 60s. Finally, the AP is in
|
||||
charge of relaying data to the cloud via the network part.
|
||||
|
||||
\begin{table}[]
|
||||
\centering
|
||||
\caption{Simulations Energy Parameters}
|
||||
\label{tab:wifi-energy}
|
||||
\subtable[IoT part]{
|
||||
\begin{tabular}{@{}lr@{}}
|
||||
Parameter & Value \\ \midrule
|
||||
Supply Voltage & 3.3V \\
|
||||
Tx & 0.38A \\
|
||||
Rx & 0.313A \\
|
||||
Idle & 0.273A \\ \bottomrule
|
||||
\end{tabular}}
|
||||
\hspace{0.3cm}
|
||||
\subtable[Network part]{
|
||||
\label{tab:net-energy}
|
||||
\begin{tabular}{@{}lr@{}}
|
||||
Parameter & Value \\ \midrule
|
||||
Idle & 0.00001W \\
|
||||
Bytes (Tx/Rx) & 3.4nJ \\
|
||||
Pkt (Tx/Rx) & 192.0nJ \\ \bottomrule
|
||||
\end{tabular}
|
||||
}
|
||||
\label{tab:params}
|
||||
\end{table}
|
||||
|
||||
\subsection{Network Part}
|
||||
\label{sec:org2f479bf}
|
||||
The network part represents the a network section starting from the AP to the Cloud excluding the
|
||||
server. It is also modeled into ns3. We consider the server to be 9 hops away from the AP with a
|
||||
typical round-trip latency of 100ms from the AP to the server
|
||||
\cite{li_end--end_2018}. Each node from the AP to the Cloud
|
||||
is a network switch with static and dynamic network energy consumption. The first 8
|
||||
hops are edge switches and the last one is consider to be a core router as mentioned in
|
||||
\cite{jalali_fog_2016}. ECOFEN \cite{orgerie_ecofen:_2011} is used to model the energy
|
||||
consumption of the network part. ECOFEN is an ns3 network energy module dedicated to wired
|
||||
networks. It is based on an energy-per-bit and energy-per-packet
|
||||
model for the dynamic energy consumption
|
||||
\cite{sivaraman_profiling_2011,Serrano2015}, and it includes also a static energy consumption.
|
||||
The different values used to instantiate the ECOFEN energy model for the
|
||||
network part are shown in left part of Table \ref{tab:params} and come from previous work
|
||||
\cite{cornea_studying_2014-1}.
|
||||
|
||||
\subsection{Cloud Part}
|
||||
\label{sec:orgeacf775}
|
||||
Finally, to measure the energy consumed by the Cloud part, we use a real server from the large-scale
|
||||
test-bed Grid'5000. Grid'5000 provides clusters composed of several nodes which
|
||||
are connected to wattmeters. The wattmeters provide 50
|
||||
instantaneous power measurements per second and per server. This
|
||||
way, we can benefit from real energy measurements. The server used
|
||||
in the experiment embeds two Intel Xeon E5-2620 v4 processors with
|
||||
64 GB of RAM and 600GB
|
||||
of disk space on a Linux based operating system. This server is configured to use KVM as
|
||||
virtualization mechanism. We deploy a classical Debian x86\_64 distribution on the Virtual Machine
|
||||
(VM) along with a MySQL database. We use different amounts of allocated memory for the VM namely
|
||||
1024MB/2048MB/4096MB to highlight its effects on the server energy
|
||||
consumption. The server only hosts this VM in order to easily isolate its
|
||||
power consumption.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.45\linewidth]{./plots/g5k-xp.png}
|
||||
\caption{Grid'5000 experimental setup.}
|
||||
\label{fig:g5kExp}
|
||||
\end{figure}
|
||||
|
||||
The data sent by the IoT devices are simulated using another
|
||||
server from the same cluster. This server is in charge of sending
|
||||
the data packets to the VM hosting the application in order to fill
|
||||
its database. In the following, each data packet coming from an IoT
|
||||
device and addressed to the application VM is called a request. Consequently, it is easy to vary the
|
||||
different application characteristics namely: \textbf{1)} The number
|
||||
of requests, to virtually
|
||||
add/remove sensors \textbf{2)} The requests interval, to study the
|
||||
impact of the transmitting frequency. Figure \ref{fig:g5kExp} presents this simulation
|
||||
setup.
|
||||
|
||||
|
||||
|
||||
|
||||
\section{Evaluation}
|
||||
\label{sec:org21ac4f0}
|
||||
\label{sec:eval}
|
||||
|
||||
\subsection{IoT and Network Power Consumption}
|
||||
\label{sec:org5a488af}
|
||||
In this section, we analyze the experimental results.
|
||||
In a first place, we start by studying the impact of the sensors' transmission frequency on their
|
||||
energy consumption. To this end, we run several simulations in ns3 with 15 sensors using
|
||||
different transmission frequencies. The results provided by Table
|
||||
\ref{tab:sensorsSendIntervalEffects} show that the transmission frequency has a very low impact
|
||||
on the energy consumption and on the average end-to-end application delay. It has an impact of
|
||||
course, but it is very limited. This due to the fact that in such a scenario with very small
|
||||
number of communications spread over the time, sensors don't have to contend for accessing to the
|
||||
Wifi channel.
|
||||
|
||||
% Please add the following required packages to your document preamble:
|
||||
% \usepackage{booktabs}
|
||||
\begin{table*}[]
|
||||
\centering
|
||||
\caption{Sensors transmission interval effects with 15 sensors}
|
||||
\label{tab:sensorsSendIntervalEffects}
|
||||
\begin{tabular}{@{}lrrrrr@{}}
|
||||
\toprule
|
||||
Transmission Interval & 10s & 30s & 50s & 70s & 90s \\ \midrule
|
||||
Sensor Power & 13.517\hl{94}W & 13.517\hl{67}W & 13.51767W & 13.51767W & 13.517\hl{61}W \\
|
||||
Network Power & 0.441\hl{88}W & 0.441\hl{77}W & 0.44171W & 0.44171W & 0.441\hl{71}W \\
|
||||
Application Delay & 0.09951s & 0.10021s & 0.10100s & 0.10203s & 0.10202s \\ \bottomrule
|
||||
\end{tabular}
|
||||
\end{table*}
|
||||
|
||||
|
||||
Previous work \cite{li_end--end_2018} on a similar scenario shows that increasing application
|
||||
accuracy impacts strongly the energy consumption in the context of data stream analysis. However,
|
||||
in our case, application accuracy is driven by the sensing interval and thus, the transmission
|
||||
frequency of the sensors.
|
||||
In our case with small and sporadic network traffic, these results show that with a reasonable
|
||||
transmission interval, the energy consumption of the IoT and the
|
||||
network parts are almost not affected by the
|
||||
variation of this transmission interval. In fact, transmitted data are not large enough to
|
||||
leverage the energy consumed by the network.
|
||||
|
||||
We then vary the number of sensors in the Wifi cell.
|
||||
The Figure \ref{fig:sensorsNumber} represents the energy consumed by each simulated part
|
||||
according to the number of sensors. It is clear that the energy consumed by the network is the
|
||||
dominant part. However, if the number of sensors is increasing, the energy consumed by the
|
||||
network can become smaller than the sensors part. In fact, deploying new
|
||||
sensors in the cell do not introduce much network load. To this end, sensors energy consumption
|
||||
can become dominant.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.5\linewidth]{./plots/numberSensors-WIFINET.png}
|
||||
\caption{Analysis of the variation of the number of sensors on the IoT/Network part energy consumption for a transmission interval of 10s.}
|
||||
\label{fig:sensorsNumber}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection{Cloud Energy Consumption}
|
||||
\label{sec:orgf1c1df0}
|
||||
In this end-to-end energy consumption study, cloud accounts for a huge part of the overall energy
|
||||
consumption. According a report \cite{shehabi_united_2016-1} On United States data center energy
|
||||
usage, the average Power Usage Effectiveness (PUE) of an hyper-scale data center is 1.2. Thus, in
|
||||
our analysis, all energy measurement on cloud server will account
|
||||
for this PUE. It means that the power consumption of the server is multiplied by
|
||||
the PUE to include the external energy costs like server cooling
|
||||
and data center facilities \cite{Ehsan}.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.8\linewidth]{./plots/vmSize-cloud.png}
|
||||
\caption{Server power consumption multiplied by the PUE (= 1.2) using 20 sensors sending data every 10s for various VM memory sizes}
|
||||
\label{fig:vmSize}
|
||||
\end{figure}
|
||||
|
||||
|
||||
Firstly, we analyze the impact of the VM allocated memory on the server energy
|
||||
consumption. Figure \ref{fig:vmSize} depicts the server energy consumption according to the VM
|
||||
allocated memory for 20 sensors sending data every 10s. Note that
|
||||
the horizontal red line represents
|
||||
the average energy consumption for the considered sample of energy values. We can see that at
|
||||
each transmission interval, the server faces spikes of energy
|
||||
consumption. However, the amount of allocated memory to the VM
|
||||
does not significantly influence the server energy consumption. In
|
||||
fact, simple database requests do not need any particular
|
||||
heavy memory accesses and processing time. Thus, remaining experiments are based on VM with 1024MB
|
||||
of allocated memory.
|
||||
|
||||
Next, we study the effects of increasing the number of sensors on the server energy consumption.
|
||||
Figure \ref{fig:sensorsNumber-server} presents the results of the average server energy
|
||||
consumption when varying the number of sensors from 20 to 500, while Figure
|
||||
\ref{fig:sensorsNumber-WPS} presents the average server energy cost per sensor according to the
|
||||
number of sensors. These results show a clear linear relation between the number of sensors and
|
||||
the server energy consumption. Moreover, we can see that the more sensors we have per VM, the
|
||||
more energy we can save. In fact, since the server's idle power
|
||||
consumption is high (around 97 Watts), it is more
|
||||
energy efficient to maximize the number of sensors per server. As shown on Figure
|
||||
\ref{fig:sensorsNumber-WPS}, a significant amount of energy can be save when passing from 20 to
|
||||
300 sensors per VM. Note that these measurements are not the row
|
||||
measurements taken from the wattmeters: they include the PUE
|
||||
but they are not shared among all the VMs that could be hosted on this
|
||||
server. So, for the studied server, its static power consumption
|
||||
(also called idle consumption) is around 83.2 Watts and we consider
|
||||
a PUE of 1.2, this value is taken from \cite{shehabi_united_2016-1}\}.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\subfigure[Average server energy consumption multiplied by the PUE (= 1.2)]{
|
||||
\includegraphics[width=0.4\linewidth]{./plots/sensorsNumberLine-cloud.png}
|
||||
\label{fig:sensorsNumber-server}
|
||||
}
|
||||
\hspace{0.5cm}
|
||||
\subfigure[Average sensors energy cost on the server hosting only our VM]{
|
||||
\includegraphics[width=0.4\linewidth]{./plots/WPS-cloud.png}
|
||||
\label{fig:sensorsNumber-WPS}
|
||||
}
|
||||
\caption{Server energy consumption multiplied by the PUE (= 1.2) for sensors sending data every 10s}
|
||||
\label{fig:sensorsNumber-cloud}
|
||||
\end{figure}
|
||||
|
||||
A last parameter can leverage server energy consumption, namely
|
||||
sensors transmission interval. In addition
|
||||
to increasing the application accuracy, sensors transmission frequency increases network traffic and
|
||||
database accesses. Figure \ref{fig:sensorsFrequency} presents the impact on the server energy
|
||||
consumption when changing the transmission interval of 50 sensors
|
||||
to 1s, 10s and 30s. We can see that, the lower sensors transmission
|
||||
interval is, the more server energy consumption peaks
|
||||
occur. Therefore, it leads to an increase of the server energy consumption.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[scale=0.5]{plots/sendInterval-cloud.png}
|
||||
\caption{Server energy consumption multiplied by the PUE (= 1.2) for 50 sensors sending requests at different transmission interval.}
|
||||
\label{fig:sensorsFrequency}
|
||||
\end{figure}
|
||||
|
||||
\section{End-To-End Consumption Model}
|
||||
\label{sec:org75005f9}
|
||||
\label{sec:discuss}
|
||||
|
||||
To have an overview of the energy consumed by the overall system, it is important to consider the
|
||||
end-to-end energy consumption.
|
||||
We detail here the model used to attribute the energy
|
||||
consumption of our application for each part of the
|
||||
architecture. For a given IoT device, we have:
|
||||
\begin{enumerate}
|
||||
\item For the IoT part, the entire consumption of the IoT device
|
||||
belongs to the system's accounted consumption.
|
||||
\item For the network part, the data packets generated by the IoT
|
||||
device travel through network switches, routers and ports that
|
||||
are shared with other traffic.
|
||||
\item For the cloud part, the VM hosting the data is shared with
|
||||
other IoT devices belonging to the same application and the
|
||||
server hosting the VM also hosts other VMs. Furthermore, the
|
||||
server belongs to a data center and takes part in the overall
|
||||
energy drawn to cool the server room.
|
||||
\end{enumerate}
|
||||
|
||||
Concerning the IoT part, we include the entire IoT device power
|
||||
consumption. Indeed, in our targeted low-bandwidth IoT application,
|
||||
the sensor is dedicated to this application. From Table \ref{tab:params}, one can
|
||||
derive that the static power
|
||||
consumption of one IoT sensor is around 0.9 Watts. Its dynamic part
|
||||
depends on the transmission frequency.
|
||||
|
||||
Concerning the sharing of the network costs, for each router, we
|
||||
consider its aggregate bandwidth (on all the ports), its average
|
||||
link utilization and the share taken by our IoT application. For a
|
||||
given network device, we compute our share of the static energy
|
||||
part as follows:
|
||||
|
||||
\[P_{static}^{netdevice} = \frac{P_{static}^{device} \times Bandwidth^{application}}{AggregateBandwidth^{device}
|
||||
\times LinkUtilization^{device}}\]
|
||||
|
||||
where \(P_{static}^{device}\) is the static power consumption of the
|
||||
network device (switch fabrics for instance or gateway),
|
||||
\(Bandwidth^{application }\) Is the bandwidth used by our IoT application,
|
||||
\(AggregateBandwidth^{device }\) is the overall aggregated bandwidth of the
|
||||
network device on all its ports, and \(LinkUtilization^{device}\) is the
|
||||
effective link utilization percentage. The \(Bandwidth^{application }\)
|
||||
depends on the transmission frequency in our use-case.
|
||||
The formula includes the
|
||||
link utilization in order to charge for the effective energy cost
|
||||
per trafic and not for the theoretical upper bound which is the
|
||||
link bandwidth. Indeed, using such an upper bound leads to greatly
|
||||
underestimate our energy part, since link utilization typically
|
||||
varies between 5 to 40\% \cite{Hassidim2013,Zhang2016}.
|
||||
|
||||
Similarly, for each network port, we take the share attributable to
|
||||
our application: the ratio of our bandwidth utilization over the
|
||||
port bandwidth multiplied by the link utilization and the overall
|
||||
static power consumption of the port. Table \ref{tab:netbidules}
|
||||
summarizes the parameters used in our model, they are taken from
|
||||
\cite{mahadevan_power_2009,Hassidim2013}. These are the parameters
|
||||
used in our formula to compute the values that we used in the
|
||||
simulations and that are presented in left part of Table \ref{tab:params}.
|
||||
|
||||
|
||||
|
||||
\begin{table}[]
|
||||
\centering
|
||||
\caption{Network Devices Parameters}
|
||||
\label{tab:netbidules}
|
||||
\begin{tabular}{l|l}
|
||||
Device & ~Parameters \\ \midrule
|
||||
Gateway & ~Static power = 8.3 Watts, Bandwidth = 54Mbps, Utilization = 10\% \\
|
||||
Core router & ~Static power = 555 Watts, 48 ports of 1 Gbps, Utilization = 25\% \\
|
||||
Edge switch~ & ~Static power = 150 Watts, 48 ports of 1 Gbps, Utilization = 25\% \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
|
||||
|
||||
For the sharing of the Cloud costs, we take into account the number
|
||||
of VMs that a server can host, the CPU utilization of a VM and the
|
||||
PUE. For a given Cloud server hosting our IoT application, we
|
||||
compute our share of the static energy part as follows:
|
||||
|
||||
\[P_{static}^{Cloudserver} = \frac{P_{static}^{server} \times PUE^{DataCenter}}{HostedVMs^{server}}\]
|
||||
|
||||
Where \(P_{static}^{server}\) is the static power consumption of the
|
||||
server, \(PUE^{DataCenter}\) is the data center PUE, and
|
||||
\(HostedVMs^{server}\) is the number of VMs a server can host. This last
|
||||
parameter should be adjusted in the case of VMs with multiple
|
||||
virtual CPUs. We do not
|
||||
consider here over-commitment of Cloud servers. Yet, the dynamic
|
||||
energy part is computed with the real dynamic measurements, so it
|
||||
accounts for VM over-provisioning and resource under-utilization.
|
||||
|
||||
In our case, the Cloud server has 14 cores, which corresponds to
|
||||
the potential hosting of 14 small VMs with one virtual CPU each,
|
||||
and each vCPU is pinned to a server core. We consider that for
|
||||
fault-tolerance purpose, the IoT application has a replication
|
||||
factor of 2, meaning that two cloud servers store its database.
|
||||
|
||||
The Figure \ref{fig:end-to-end} represents the end-to-end system
|
||||
energy consumption using the model described above while varying
|
||||
the number of sensors for a transmission interval of 10
|
||||
seconds. The values are extracted from the experiments presented in
|
||||
the previous section.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\hspace{1cm}
|
||||
\includegraphics[scale=0.35]{plots/final.png}
|
||||
\label{fig:end-to-end}
|
||||
\caption{End-to-end network energy consumption using sensors interval of 10s}
|
||||
\end{figure}
|
||||
|
||||
|
||||
Note that, for small-scale systems, with WiFi IoT devices, the IoT
|
||||
sensor part is dominant in the overall energy consumption. Indeed,
|
||||
the IoT application induces a very small cost on Cloud and network
|
||||
infrastructures compared to the IoT device cost. But, our model
|
||||
assumes that a single VM is handling multiple users (up to 300
|
||||
sensors), thus being energy-efficient. Conclusions would be
|
||||
different with one VM per user in the case of no over-commitment on
|
||||
the Cloud side. For the network infrastructure, in our case of
|
||||
low-bandwidth utilization (one data packet every 10 seconds), the
|
||||
impact is almost negligible.
|
||||
|
||||
Another way of looking at these results is to observe that only for
|
||||
a high number of sensors (more than 300), the power consumption of Cloud and
|
||||
network parts start to be negligible (few percent). It means that,
|
||||
if IoT applications handle clients one by one (i.e. one VM per
|
||||
client), the impact is high on cloud and network part if they have
|
||||
only few sensors. The energy efficiency is really poor for only few
|
||||
devices: with 20 IoT sensors, the overall energy cost to handle these
|
||||
devices is almost doubled compared to the energy consumption of the IoT devices
|
||||
themselves. Instead of increasing the number of sensors, which
|
||||
would result in a higher overall energy consumption, one should
|
||||
focus on reducing the energy consumption of IoT devices, especially
|
||||
WiFi devices which are common due to WiFi availability
|
||||
everywhere. One could also focus on improving the energy cost of
|
||||
Cloud and network infrastructure for low-bandwidth applications and
|
||||
few devices.
|
||||
|
||||
|
||||
|
||||
\section{Conclusion}
|
||||
\label{sec:orgb2daa12}
|
||||
\label{sec:cl}
|
||||
|
||||
Information and Communication Technology takes a growing part in the
|
||||
worldwide energy consumption. One of the root causes of this increase
|
||||
lies in the multiplication of connected devices. Each object of the
|
||||
Internet-of-Things often does not consume much energy by itself. Yet,
|
||||
their number and the infrastructures they require to properly work
|
||||
have leverage.
|
||||
|
||||
In this paper, we combine simulations and real
|
||||
measurements to study the energy impact of IoT devices. In particular,
|
||||
we analyze the energy consumption of Cloud and telecommunication
|
||||
infrastructures induced by the utilization of connected devices.
|
||||
Through the fine-grain analysis of a given low-bandwidth IoT device
|
||||
periodically sending data to a Cloud server using WiFi,
|
||||
we propose an end-to-end energy consumption model.
|
||||
This model provides insights on the hidden part of the iceberg: the
|
||||
impact of IoT devices on the energy consumption of Cloud and network
|
||||
infrastructures. On our use-case, we show that for a given sensor, its
|
||||
larger energy consumption is on the sensor part. But the impact on the
|
||||
Cloud and network part is huge when using only few sensors with
|
||||
low-bandwidth applications.
|
||||
Consequently, with the
|
||||
IoT exploding growth, it becomes necessary to improve the energy
|
||||
efficiency of applications hosted on Cloud infrastructures and of IoT devices.
|
||||
Our future work includes studying other types of IoT wireless
|
||||
transmission techniques that would be more energy-efficient. We also
|
||||
plan to study other
|
||||
IoT applications in order to increase the applicability of our model
|
||||
and provide advice for increasing the energy-efficiency of IoT infrastructures.
|
||||
|
||||
|
||||
|
||||
\bibliographystyle{IEEEtran}
|
||||
\bibliography{references}
|
||||
\end{document}
|
47
logs/ns3/logs-on-g5k-try1/plots/plots.tex
Normal file
47
logs/ns3/logs-on-g5k-try1/plots/plots.tex
Normal file
|
@ -0,0 +1,47 @@
|
|||
% Created 2019-05-06 lun. 12:03
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[11pt]{article}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{grffile}
|
||||
\usepackage{longtable}
|
||||
\usepackage{wrapfig}
|
||||
\usepackage{rotating}
|
||||
\usepackage[normalem]{ulem}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{textcomp}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{capt-of}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{fullpage}
|
||||
\date{\today}
|
||||
\title{Analysis}
|
||||
\hypersetup{
|
||||
pdfauthor={},
|
||||
pdftitle={Analysis},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 26.2 (Org mode 9.1.9)},
|
||||
pdflang={English}}
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
\begin{center}
|
||||
\begin{tabular}{lr}
|
||||
Parameters & Values\\
|
||||
\hline
|
||||
sensorsPktSize & 5 bytes\\
|
||||
sensorsSendInterval & 10s\\
|
||||
sensorsNumber & 10\\
|
||||
nbHop & 10\\
|
||||
linksBandwidth & 10Mbps\\
|
||||
linksLatency & 2ms\\
|
||||
\end{tabular}
|
||||
\newline
|
||||
\end{center}
|
||||
\includegraphics[width=0.5\linewidth]{BW-linksBandwidth_totalEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{NBSENSORS-sensorsNumber_totalEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{LATENCY-linksLatency_totalEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{NBHOP-nbHop_totalEnergy.png}
|
||||
\end{document}
|
47
logs/ns3/logs-on-my-machine-try1/plots/plots.tex
Normal file
47
logs/ns3/logs-on-my-machine-try1/plots/plots.tex
Normal file
|
@ -0,0 +1,47 @@
|
|||
% Created 2019-05-06 lun. 11:10
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[11pt]{article}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{grffile}
|
||||
\usepackage{longtable}
|
||||
\usepackage{wrapfig}
|
||||
\usepackage{rotating}
|
||||
\usepackage[normalem]{ulem}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{textcomp}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{capt-of}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{fullpage}
|
||||
\date{\today}
|
||||
\title{Analysis}
|
||||
\hypersetup{
|
||||
pdfauthor={},
|
||||
pdftitle={Analysis},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 26.2 (Org mode 9.1.9)},
|
||||
pdflang={English}}
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
\begin{center}
|
||||
\begin{tabular}{lr}
|
||||
Parameters & Values\\
|
||||
\hline
|
||||
sensorsPktSize & 5 bytes\\
|
||||
sensorsSendInterval & 10s\\
|
||||
sensorsNumber & 10\\
|
||||
nbHop & 10\\
|
||||
linksBandwidth & 10Mbps\\
|
||||
linksLatency & 2ms\\
|
||||
\end{tabular}
|
||||
\newline
|
||||
\end{center}
|
||||
\includegraphics[width=0.5\linewidth]{BW-linksBandwidth_totalEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{NBSENSORS-sensorsNumber_totalEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{LATENCY-linksLatency_totalEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{NBHOP-nbHop_totalEnergy.png}
|
||||
\end{document}
|
Binary file not shown.
Before Width: | Height: | Size: 5.9 KiB After Width: | Height: | Size: 6.3 KiB |
BIN
plots/final.png
BIN
plots/final.png
Binary file not shown.
Before Width: | Height: | Size: 21 KiB After Width: | Height: | Size: 22 KiB |
51
plots/plots.tex
Normal file
51
plots/plots.tex
Normal file
|
@ -0,0 +1,51 @@
|
|||
% Created 2019-05-22 mer. 09:13
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[11pt]{article}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{grffile}
|
||||
\usepackage{longtable}
|
||||
\usepackage{wrapfig}
|
||||
\usepackage{rotating}
|
||||
\usepackage[normalem]{ulem}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{textcomp}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{capt-of}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{fullpage}
|
||||
\date{\today}
|
||||
\title{Analysis}
|
||||
\hypersetup{
|
||||
pdfauthor={},
|
||||
pdftitle={Analysis},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 26.2 (Org mode 9.1.9)},
|
||||
pdflang={English}}
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
\begin{center}
|
||||
\begin{tabular}{lr}
|
||||
Parameters & Values\\
|
||||
\hline
|
||||
sensorsPktSize & bytes\\
|
||||
sensorsSendInterval & s\\
|
||||
sensorsNumber & \\
|
||||
nbHop & \\
|
||||
linksBandwidth & Mbps\\
|
||||
linksLatency & ms\\
|
||||
\end{tabular}
|
||||
\newline
|
||||
\end{center}
|
||||
\includegraphics[width=0.5\linewidth]{SENDINTERVAL-sensorsSendInterval_networkEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{SENDINTERVAL-sensorsSendInterval_sensorsEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{SENSORSPOS-positionSeed_avgDelay.png}
|
||||
\includegraphics[width=0.5\linewidth]{NBSENSORS-sensorsNumber_totalEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{sensorsSendInterval-net.png}
|
||||
\includegraphics[width=0.5\linewidth]{SENSORSPOS-positionSeed_totalEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{final.png}
|
||||
\includegraphics[width=0.5\linewidth]{sensorsSendInterval-wifi.png}
|
||||
\end{document}
|
52
src/ns3/plots/plots.tex
Normal file
52
src/ns3/plots/plots.tex
Normal file
|
@ -0,0 +1,52 @@
|
|||
% Created 2019-05-15 mer. 15:24
|
||||
% Intended LaTeX compiler: pdflatex
|
||||
\documentclass[11pt]{article}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{grffile}
|
||||
\usepackage{longtable}
|
||||
\usepackage{wrapfig}
|
||||
\usepackage{rotating}
|
||||
\usepackage[normalem]{ulem}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{textcomp}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{capt-of}
|
||||
\usepackage{hyperref}
|
||||
\usepackage{fullpage}
|
||||
\date{\today}
|
||||
\title{Analysis}
|
||||
\hypersetup{
|
||||
pdfauthor={},
|
||||
pdftitle={Analysis},
|
||||
pdfkeywords={},
|
||||
pdfsubject={},
|
||||
pdfcreator={Emacs 26.2 (Org mode 9.1.9)},
|
||||
pdflang={English}}
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
\begin{center}
|
||||
\begin{tabular}{lr}
|
||||
Parameters & Values\\
|
||||
\hline
|
||||
sensorsPktSize & 5 bytes\\
|
||||
sensorsSendInterval & 10s\\
|
||||
sensorsNumber & 10\\
|
||||
nbHop & 10\\
|
||||
linksBandwidth & 10Mbps\\
|
||||
linksLatency & 2ms\\
|
||||
\end{tabular}
|
||||
\newline
|
||||
\end{center}
|
||||
\includegraphics[width=0.5\linewidth]{SENDINTERVAL-sensorsSendInterval_networkEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{SENDINTERVAL-sensorsSendInterval_sensorsEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{SENSORSPOS-positionSeed_avgDelay.png}
|
||||
\includegraphics[width=0.5\linewidth]{NBSENSORS-sensorsNumber_totalEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{SENDINTERVAL-sensorsSendInterval_totalEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{SENDINTERVAL-sensorsSendInterval_energyWifi.png}
|
||||
\includegraphics[width=0.5\linewidth]{sensorsSendInterval-net.png}
|
||||
\includegraphics[width=0.5\linewidth]{SENSORSPOS-positionSeed_totalEnergy.png}
|
||||
\includegraphics[width=0.5\linewidth]{sensorsSendInterval-wifi.png}
|
||||
\end{document}
|
Loading…
Add table
Reference in a new issue