mirror of
https://gitlab.com/manzerbredes/paper-lowrate-iot.git
synced 2025-04-19 04:09:43 +00:00
intro draft
This commit is contained in:
parent
3aebb53593
commit
bbb52c8e39
5 changed files with 148 additions and 20 deletions
|
@ -32,19 +32,74 @@ Information and Communication Technology takes a growing part in the worldwide e
|
|||
#+END_EXPORT
|
||||
|
||||
|
||||
* Introduction [2 col]
|
||||
More and more IoT devices: smart building, smart factories, etc.
|
||||
Many sending few data, though taking a lot of bandwidth (Sandvine
|
||||
report)
|
||||
IoT devices, only top of the iceberg: induced consumption on telco net
|
||||
and cloud infra
|
||||
In this paper, we estimate the overall energy consumption of an IoT
|
||||
device environment by combining simulations and real measurements.
|
||||
* Introduction
|
||||
In 2018, Information and Communication Technology (ICT) was estimated
|
||||
to absorb around 3% of the global energy consumption, with a growing
|
||||
rate of 9% per year \cite{ShiftProject}. This alarming growing rate is
|
||||
explained by the emergence of new applications and new ICT devices
|
||||
for smart building, smart factories, smart cities, etc. All these
|
||||
connected devices constitute the Internet of Things (IoT): connected
|
||||
devices with sensors producing data, actuators interacting with their
|
||||
environment and communication means.
|
||||
|
||||
This increase in number of devices implies an increase in the energy
|
||||
needed to manufacture and use these devices. Yet, another energy cost is
|
||||
directly implied by IoT devices: the cost of computing and
|
||||
communication infrastructures they rely on. Indeed, IoT devices
|
||||
communicate with Cloud computing infrastructures to store, analyze and
|
||||
share their data.
|
||||
|
||||
In February 2019, a report by Cisco stated that ``IoT connections will
|
||||
represent more than half (14.6 billion) of all global connected
|
||||
devices and connections (28.5 billion) by 2022" \cite{Cisco2019}. This
|
||||
will represent more than 6% of global IP traffic, against 3% in
|
||||
2017 \cite{Cisco2019}. The IoT devices have an increasing impact on
|
||||
Internet bandwidth.
|
||||
|
||||
While some IoT devices produce a lot of data, like smart vehicles for
|
||||
instance, many others generate only a small amount of data, like smart
|
||||
meters. However, the scale matters here: many small devices can end up
|
||||
producing big data. As an example, according to a report published by
|
||||
Sandvine in October 2018, the Google Nest Thermostat is the most
|
||||
significant IoT device in terms of worldwide connections: it
|
||||
represents 0.16% of all connections, ranging 55th on the list of
|
||||
connections \cite{Sandvine2018}. As a comparison, the voice assistants
|
||||
Alexa and Siri are respectively 97th and 102nd with 0.05% of all
|
||||
connections \cite{Sandvine2018}.
|
||||
|
||||
The energy consumption of IoT devices themselves is only the top of
|
||||
the iceberg: their use induce energy costs in communication and cloud
|
||||
infrastructures. In this paper, we estimate the overall energy
|
||||
consumption of an IoT device environment by combining simulations and
|
||||
real measurements. We focus on a given application with low bandwidth
|
||||
requirement and we evaluate its overall energy consumption: from the
|
||||
device, through telecommunication networks, and up to the Cloud data
|
||||
center hosting the application. From this analysis, we derive an
|
||||
end-to-end energy consumption model that can be used to assess the
|
||||
consumption of other IoT devices.
|
||||
|
||||
Our main contributions...
|
||||
|
||||
Sections...
|
||||
* Related Work [1 col]
|
||||
|
||||
|
||||
|
||||
* Related Work
|
||||
Smart industry \cite{Wang2016}
|
||||
Smart cities \cite{Ejaz2017}
|
||||
* Use-Case [1 col]
|
||||
* Use-Case
|
||||
|
||||
#+BEGIN_EXPORT latex
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.85\linewidth]{./plots/parts2.png}
|
||||
\caption{Overview of the IoT architecture.}
|
||||
\label{fig:parts}
|
||||
\end{figure}
|
||||
#+END_EXPORT
|
||||
|
||||
|
||||
|
||||
** Application Characteristic
|
||||
|
||||
#+BEGIN_COMMENT
|
||||
|
@ -61,9 +116,19 @@ Smart cities \cite{Ejaz2017}
|
|||
#+END_COMMENT
|
||||
|
||||
|
||||
#+BEGIN_EXPORT latex
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.6\linewidth]{./plots/home.png}
|
||||
\caption{Overview of IoT devices.}
|
||||
\label{fig:IoTdev}
|
||||
\end{figure}
|
||||
#+END_EXPORT
|
||||
|
||||
|
||||
** Cloud Infrastructure
|
||||
|
||||
* System Model [2 col]
|
||||
* System Model
|
||||
|
||||
The system model is divided in two parts. First, the IoT and the Network part are models through
|
||||
simulations. Then, the Cloud part is model using real servers connected to watt-meters. In this way,
|
||||
|
@ -141,7 +206,7 @@ Smart cities \cite{Ejaz2017}
|
|||
different requests characteristics namely: \textbf{1)} The number request, to virtually
|
||||
add/remove sensors \textbf{2)} The requests interval.
|
||||
|
||||
* Evaluation [3 col]
|
||||
* Evaluation
|
||||
** IoT/Network Consumption
|
||||
In a first place, we start by studying the impact of the sensors position on their energy
|
||||
consumption. To this end, we run several simulations in ns-3 with different sensors position. The
|
||||
|
@ -292,9 +357,10 @@ Smart cities \cite{Ejaz2017}
|
|||
|
||||
|
||||
|
||||
* Discussion [1 col]
|
||||
* Conclusion [1 col]
|
||||
* References [1 col]
|
||||
* Discussion
|
||||
* Conclusion
|
||||
|
||||
|
||||
\bibliographystyle{IEEEtran}
|
||||
\bibliography{references}
|
||||
|
||||
|
|
BIN
2019-ICA3PP.pdf
BIN
2019-ICA3PP.pdf
Binary file not shown.
BIN
plots/home.png
Normal file
BIN
plots/home.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 150 KiB |
BIN
plots/parts2.png
Normal file
BIN
plots/parts2.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 170 KiB |
|
@ -736,7 +736,7 @@ programming guide through functional cross-volume table of contents, references,
|
|||
@misc{noauthor_overview_2016,
|
||||
title = {Overview of {IoT} {LPWAN} technologies ({Low} {Power} {Wide} {Area} {Network}) {SIGFOX} \& {LoRa}},
|
||||
year = {2016},
|
||||
file = {2016 - Overview of IoT LPWAN technologies (Low Power Wid.pdf:/home/loic/.zotero/zotero/383myqxk.default/zotero/storage/7NR3MDCR/2016 - Overview of IoT LPWAN technologies (Low Power Wid.pdf:application/pdf}
|
||||
file = {2016 - Overview of IoT LPWAN technologies (Low Power Wid.pdf:/home/loic/.zotero/zotero/383myqxk.default/zotero/storage/7NR3MDCR/2016 - Overview of IoT LPWAN technologies (Low Power Wid.pdf:application/pdf))}
|
||||
}
|
||||
|
||||
@misc{noauthor_comprehensive_2016,
|
||||
|
@ -989,7 +989,7 @@ time is verified under different circumstances.},
|
|||
@book{kolmogorov_elements_nodate,
|
||||
title = {Elements de la theorie des fonctions et de l'analyse fonctionnelle},
|
||||
author = {Kolmogorov, A and Fomine, S},
|
||||
file = {Kolmogorov A., Fomine S. Elements de la theorie des fonctions et de l'analyse fonctionnelle (2ed..djv:/home/loic/.zotero/zotero/383myqxk.default/zotero/storage/EH2I6EHP/Kolmogorov A., Fomine S. Elements de la theorie des fonctions et de l'analyse fonctionnelle (2ed..djv:image/vnd.djvu;Kolmogorov A., Fomine S. Elements de la theorie des fonctions et de l'analyse fonctionnelle (2ed..djv.pdf:/home/loic/.zotero/zotero/383myqxk.default/zotero/storage/77JTH67G/Kolmogorov A., Fomine S. Elements de la theorie des fonctions et de l'analyse fonctionnelle (2ed..djv.pdf:application/pdf}
|
||||
file = {Kolmogorov A., Fomine S. Elements de la theorie des fonctions et de l'analyse fonctionnelle (2ed..djv:/home/loic/.zotero/zotero/383myqxk.default/zotero/storage/EH2I6EHP/Kolmogorov A., Fomine S. Elements de la theorie des fonctions et de l'analyse fonctionnelle (2ed..djv:image/vnd.djvu;Kolmogorov A., Fomine S. Elements de la theorie des fonctions et de l'analyse fonctionnelle (2ed..djv.pdf:/home/loic/.zotero/zotero/383myqxk.default/zotero/storage/77JTH67G/Kolmogorov A., Fomine S. Elements de la theorie des fonctions et de l'analyse fonctionnelle (2ed..djv.pdf:application/pdf))))}
|
||||
}
|
||||
|
||||
@book{schwartz_theorie_nodate,
|
||||
|
@ -2327,7 +2327,6 @@ ALGOL 68 is substantially different from ALGOL 60 and was not well received, so
|
|||
file = {Shehabi et al. - 2016 - United States Data Center Energy Usage Report.pdf:/home/loic/.zotero/zotero/383myqxk.default/zotero/storage/52D7SSUY/Shehabi et al. - 2016 - United States Data Center Energy Usage Report.pdf:application/pdf}
|
||||
}
|
||||
|
||||
<<<<<<< HEAD
|
||||
@ARTICLE{Martinez2015,
|
||||
author={B. {Martinez} and M. {Montón} and I. {Vilajosana} and J. D. {Prades}},
|
||||
journal={IEEE Sensors Journal},
|
||||
|
@ -2383,7 +2382,8 @@ title={{Power consumption of IoT access network technologies}},
|
|||
year={2015},
|
||||
pages={2818-2823},
|
||||
}
|
||||
=======
|
||||
|
||||
|
||||
@article{maity_tcp_2017,
|
||||
title = {{TCP} {Download} {Performance} in {Dense} {WiFi} {Scenarios}: {Analysis} and {Solution}},
|
||||
volume = {16},
|
||||
|
@ -2420,4 +2420,66 @@ pages={2818-2823},
|
|||
pages = {1728--1739},
|
||||
file = {Jalali et al. - 2016 - Fog Computing May Help to Save Energy in Cloud Com.pdf:/home/loic/.zotero/zotero/383myqxk.default/zotero/storage/36J4R5W6/Jalali et al. - 2016 - Fog Computing May Help to Save Energy in Cloud Com.pdf:application/pdf}
|
||||
}
|
||||
>>>>>>> 8a5c1b0606aa5fc875e9cef9881a9e9927ee5b2a
|
||||
|
||||
@inproceedings{ns3-energywifi,
|
||||
author = {Wu, He and Nabar, Sidharth and Poovendran, Radha},
|
||||
title = {{An Energy Framework for the Network Simulator 3 (NS-3)}},
|
||||
booktitle = {International ICST Conference on Simulation Tools and Techniques (SIMUTools)},
|
||||
year = {2011},
|
||||
isbn = {978-1-936968-00-8},
|
||||
location = {Barcelona, Spain},
|
||||
pages = {222--230},
|
||||
}
|
||||
|
||||
|
||||
@inproceedings{Samie:2016:ITE:2968456.2974004,
|
||||
author = {Samie, Farzad and Bauer, Lars and Henkel, J\"{o}rg},
|
||||
title = {IoT Technologies for Embedded Computing: A Survey},
|
||||
booktitle = {IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES)},
|
||||
year = {2016},
|
||||
}
|
||||
|
||||
@ARTICLE{7785890,
|
||||
author={K. {Wang} and Y. {Wang} and Y. {Sun} and S. {Guo} and J. {Wu}},
|
||||
journal={IEEE Communications Magazine},
|
||||
title={{Green Industrial Internet of Things Architecture: An Energy-Efficient Perspective}},
|
||||
year={2016},
|
||||
volume={54},
|
||||
number={12},
|
||||
pages={48-54},
|
||||
}
|
||||
|
||||
|
||||
@ARTICLE{Sarkar2018,
|
||||
author={S. {Sarkar} and S. {Chatterjee} and S. {Misra}},
|
||||
journal={IEEE Transactions on Cloud Computing},
|
||||
title={{Assessment of the Suitability of Fog Computing in the Context of Internet of Things}},
|
||||
year={2018},
|
||||
volume={6},
|
||||
number={1},
|
||||
pages={46-59},
|
||||
}
|
||||
|
||||
@misc{Sandvine2018,
|
||||
author = {Sandvine},
|
||||
title = {{The Global Internet Phenomena Report}},
|
||||
year = {2018},
|
||||
month = Oct.,
|
||||
howpublished={\url{https://www.sandvine.com/phenomena}}
|
||||
}
|
||||
|
||||
@misc{Cisco2019,
|
||||
author = {Cisco},
|
||||
title = {{Cisco Visual Networking Index: Forecast and Trends, 2017–2022, White paper}},
|
||||
year = {2019},
|
||||
month = Feb.,
|
||||
howpublished = {\url{https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html}}
|
||||
}
|
||||
|
||||
@misc{ShiftProject,
|
||||
author = {The Shift Project},
|
||||
title = {{Lean ICT, Pour une sobri\'et\'e num\'erique}},
|
||||
year = {2018},
|
||||
month = Oct.,
|
||||
howpublished = {https://theshiftproject.org/article/pour-une-sobriete-numerique-rapport-shift/}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue