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Binary logistic regression are used to predict an binary issue (win/loss, true/false) according
to various parameters. First, we have to choose a polynomial function hw(x) according to the
data complexity (see data/binary_logistic.csv). In our case, we want to predict our issue (1 or 0)
according to two parameters. Thus:

hw(x1, x2) = w1 + w2x1 + w3x2 (1)

However, the function we are looking for should return a binary result! To achieve this goal, we
can use a sigmoid (or logistic) with the following property R→]0; 1[ with the following form:

To this end, we can define the following function:

gw(x1, x2) =
1

1 + e−hw(x1,x2)
(2)

The next step is to define a cost function. A common approach in binary logistic function is to
use the Cross-Entropy loss function. It is much more convenient than the classical Mean Square
Error used in polynomial regression. Indeed, the gradient is stronger even for small error (see here
for more informations). Thus, it looks like the following:
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https://www.youtube.com/watch?v=gIx974WtVb4&t=110s


With n the number of observations, x(i)j is the value of the jth independant variable associated
with the observation y(i). The next step is to minwJ(w) for each weight wi (performing the gradient
decent, see here). Thus we compute each partial derivatives:
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Finally:
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https://towardsdatascience.com/gradient-descent-demystified-bc30b26e432a


Similarly:
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For more informations on binary logistic regression, here are usefull links:

• Logistic Regression – ML Glossary documentation

• Derivative of the Binary Cross Entropy

1 Desision Boundary

The method used here is similar to the one used here. In binary logistic regression, decision boundary
is located where:\

gw(x1, x2) = 0.5 =⇒ hw(x1, x2) = 0

In addition we now that our decision boundary has the following form

x2 = ax1 + b

Thus, we can easily deduce b since if x1 = 0 we have x2 = a× 0 + b =⇒ x2 = b. Thus:

hw(0, x2) = w1 + w3x2 = 0 =⇒ x2 =
−w1

w3
(4)

To deduce the a coefficient, it is slighly more complicated. If we know two points (xa1, x
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Thus we have the decision boundary defined as follow:
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https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html
https://math.stackexchange.com/questions/2503428/derivative-of-binary-cross-entropy-why-are-my-signs-not-right
https://scipython.com/blog/plotting-the-decision-boundary-of-a-logistic-regression-model/

	Desision Boundary

