This commit is contained in:
manzerbredes 2021-02-14 16:01:44 +01:00
parent f913e808df
commit ad57158ad2
4 changed files with 21 additions and 20 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 412 KiB

After

Width:  |  Height:  |  Size: 2.1 MiB

View file

@ -15,19 +15,21 @@ h_w(x) = w_1 + w_2x + w_3x^2
Then, we should define a cost function. A common approach is to use the *Mean Square Error*
cost function:
\begin{equation}\label{eq:cost}
J(w) = \frac{1}{2n} \sum_{i=0}^n (h_w(x^{(i)}) - \hat{y}^{(i)})^2
J(w) = \frac{1}{2n} \sum_{i=0}^n (h_w(x^{(i)}) - y^{(i)})^2
\end{equation}
Note that in Equation \ref{eq:cost} we average by $2n$ and not $n$. This is because it get simplify
while doing the partial derivatives as we will see below. This is a pure cosmetic approach which do
not impact the gradient decent (see [[https://math.stackexchange.com/questions/884887/why-divide-by-2m][here]] for more informations). The next step is to $min_w J(w)$
for each weight $w_i$ (performing the gradient decent). Thus we compute each partial derivatives:
With $n$ the number of observations, $x^{(i)}$ the value of the independant variable associated with
the observation $y^{(i)}$. Note that in Equation \ref{eq:cost} we average by $2n$ and not $n$. This
is because it simplify the partial derivatives expression as we will see below. This is a pure
cosmetic approach which do not impact the gradient decent (see [[https://math.stackexchange.com/questions/884887/why-divide-by-2m][here]] for more informations). The next
step is to $min_w J(w)$ for each weight $w_i$ (performing the gradient decent, see [[https://towardsdatascience.com/gradient-descent-demystified-bc30b26e432a][here]]). Thus we
compute each partial derivatives:
\begin{align}
\frac{\partial J(w)}{\partial w_1}&=\frac{\partial J(w)}{\partial h_w(x)}\frac{\partial h_w(x)}{\partial w_1}\nonumber\\
&= \frac{1}{n} \sum_{i=0}^n (h_w(x^{(i)}) - \hat{y}^{(i)})\\
&= \frac{1}{n} \sum_{i=0}^n (h_w(x^{(i)}) - y^{(i)})\\
\text{similarly:}\nonumber\\
\frac{\partial J(w)}{\partial w_2}&= \frac{1}{n} \sum_{i=0}^n x(h_w(x^{(i)}) - \hat{y}^{(i)})\\
\frac{\partial J(w)}{\partial w_3}&= \frac{1}{n} \sum_{i=0}^n x^2(h_w(x^{(i)}) - \hat{y}^{(i)})
\frac{\partial J(w)}{\partial w_2}&= \frac{1}{n} \sum_{i=0}^n x(h_w(x^{(i)}) - y^{(i)})\\
\frac{\partial J(w)}{\partial w_3}&= \frac{1}{n} \sum_{i=0}^n x^2(h_w(x^{(i)}) - y^{(i)})
\end{align}

Binary file not shown.

View file

@ -27,13 +27,17 @@ def dh3():
return(1/len(x)*np.sum((h(x)-y)*(x**2)))
# Perform the gradient decent
fig, ax = plt.subplots()
frame=0 # Current frame (plot animation)
fig, ax = plt.subplots(dpi=300)
ax.set_xlim([0, 7])
ax.set_ylim([0, 5])
ax.plot(x,y,"ro")
h_data,=ax.plot(x,h(x))
alpha=0.005 # Proportion of the gradient to take into account
accuracy=0.000001 # Accuracy of the decent
done=False
def decent(i):
global w1,w2,w3,x,y,frame
global w1,w2,w3,x,y
skip_frame=0 # Current frame (plot animation)
while True:
w1_old=w1
w1_new=w1-alpha*dh1()
@ -47,14 +51,9 @@ def decent(i):
if abs(w1_new-w1_old) <= accuracy and abs(w2_new-w2_old) <= accuracy and abs(w2_new-w2_old) <= accuracy:
done=True
frame+=1
if frame >=1000:
frame=0
ax.clear()
ax.set_xlim([0, 7])
ax.set_ylim([0, 5])
ax.plot(x,y,"ro")
ax.plot(x,h(x))
skip_frame+=1
if skip_frame >=1000:
h_data.set_ydata(h(x))
break
def IsDone():
@ -65,5 +64,5 @@ def IsDone():
yield i
anim=FuncAnimation(fig,decent,frames=IsDone,repeat=False)
anim.save('polynomial.gif',dpi=80,writer="imagemagick")
anim.save('polynomial.gif',writer="imagemagick",dpi=300)