machine-learning/linear_regression/polynomial.org

36 lines
1.6 KiB
Org Mode
Raw Permalink Normal View History

2021-02-13 14:39:28 +01:00
#+TITLE: Gradient Decent Based Polynomial Regression
#+AUTHOR: Loic Guegan
#+OPTIONS: toc:nil
#+LATEX_HEADER: \usepackage{fullpage}
#+latex_header: \hypersetup{colorlinks=true,linkcolor=blue}
First, choose a polynomial function $h_w(x)$ according to the data complexity.
In our case, we have:
\begin{equation}
h_w(x) = w_1 + w_2x + w_3x^2
\end{equation}
Then, we should define a cost function. A common approach is to use the *Mean Square Error*
cost function:
\begin{equation}\label{eq:cost}
2021-02-14 16:01:44 +01:00
J(w) = \frac{1}{2n} \sum_{i=0}^n (h_w(x^{(i)}) - y^{(i)})^2
2021-02-13 14:39:28 +01:00
\end{equation}
2021-02-14 16:01:44 +01:00
With $n$ the number of observations, $x^{(i)}$ the value of the independant variable associated with
the observation $y^{(i)}$. Note that in Equation \ref{eq:cost} we average by $2n$ and not $n$. This
is because it simplify the partial derivatives expression as we will see below. This is a pure
cosmetic approach which do not impact the gradient decent (see [[https://math.stackexchange.com/questions/884887/why-divide-by-2m][here]] for more informations). The next
step is to $min_w J(w)$ for each weight $w_i$ (performing the gradient decent, see [[https://towardsdatascience.com/gradient-descent-demystified-bc30b26e432a][here]]). Thus we
compute each partial derivatives:
2021-02-13 14:39:28 +01:00
\begin{align}
\frac{\partial J(w)}{\partial w_1}&=\frac{\partial J(w)}{\partial h_w(x)}\frac{\partial h_w(x)}{\partial w_1}\nonumber\\
2021-02-14 16:01:44 +01:00
&= \frac{1}{n} \sum_{i=0}^n (h_w(x^{(i)}) - y^{(i)})\\
2021-02-13 14:39:28 +01:00
\text{similarly:}\nonumber\\
2021-02-14 16:01:44 +01:00
\frac{\partial J(w)}{\partial w_2}&= \frac{1}{n} \sum_{i=0}^n x(h_w(x^{(i)}) - y^{(i)})\\
\frac{\partial J(w)}{\partial w_3}&= \frac{1}{n} \sum_{i=0}^n x^2(h_w(x^{(i)}) - y^{(i)})
2021-02-13 14:39:28 +01:00
\end{align}