library("tidyverse") library("latex2exp") ## |--------------------------------+---------------------+-------------+------------------------------+--------------------------------------------+------------------------------------------------------------------| ## | Monitored Hardware | Alim | I2C Address | Notes | OS | sha256sum (.img file) | ## |--------------------------------+---------------------+-------------+------------------------------+--------------------------------------------+------------------------------------------------------------------| ## | 1Kohm resistor | some random 5V alim | 0x40 | | | | ## | Raspberry Pi 3 model B (2016) | 5.1V rpi alim | 0x41 | Powered through GPIO 2 and 6 | 2023-05-03-raspios-bullseye-arm64-lite.img | 9cd68ff450bc0fe0ac5b60e32723bc403ebca89d1214714e8e74361370d25204 | ## | Raspberry Pi 3 model B+ (2017) | 5.1V rpi alim | 0x42 | Powered through GPIO 2 and 6 | 2023-05-03-raspios-bullseye-arm64-lite.img | 9cd68ff450bc0fe0ac5b60e32723bc403ebca89d1214714e8e74361370d25204 | ## | Raspberry Pi 4 model B (2018) | 5.1V rpi alim | 0x43 | Powered through GPIO 2 and 6 | 2023-05-03-raspios-bullseye-arm64-lite.img | 9cd68ff450bc0fe0ac5b60e32723bc403ebca89d1214714e8e74361370d25204 | ## |--------------------------------+---------------------+-------------+------------------------------+--------------------------------------------+------------------------------------------------------------------| pure_read=read_csv("results/pure_read.csv") zmq=read_csv("results/zmq.csv") GG_DELAY_READ=function(exp,for_inmem=0){ delays=exp%>%filter(inmem==for_inmem)%>%group_by(usen,deviceid)%>%mutate(tsnsec=(nsecs*10e-10)+timestamp) delays=delays%>%mutate(delay=tsnsec-lag(tsnsec,1,default=NA))%>%filter(!is.na(delay))%>%mutate(time=timestamp-startat) delays=delays%>%group_by(usen)%>%mutate(duration=max(time)) delays=delays%>%group_by(usen,deviceid,time)%>%summarize(delay_sd=sd(delay),delay_mean=mean(delay),duration=mean(duration),delay_max=max(delay),delay_min=min(delay)) ##### Store in file f=paste0("figures/delay_inmem",for_inmem,"_stddev.txt") window=0 ina1<<-delays%>%filter(usen==1,time>window,time%filter(usen==2,time>window,time%filter(usen==3,time>window,time%filter(usen==4,time>window,time%filter(inmem==for_inmem)%>%mutate(time=timestamp-startat) data=exp%>%group_by(usen,deviceid)%>%group_by(usen,deviceid,timestamp,startat,endat)%>%summarize(nperdev=n())%>%mutate(time=timestamp-startat,duration=endat-startat) ##### Now complete missing measurements (say no value on at time 5 then a row with a zero at that time must be added) data=data%>%group_by(usen,deviceid)%>%complete(timestamp=seq(min(startat),min(endat),by=1),fill=list(nperdev=0))%>%mutate(startat=min(startat,na.rm=TRUE),endat=max(startat,na.rm=TRUE),time=timestamp-startat,duration=max(duration,na.rm=TRUE)) ##### Compute additional metrics durations=exp%>%group_by(usen,deviceid)%>%summarise(duration=max(endat)-max(startat)) med=data%>%group_by(usen)%>%summarize(median=round(median(nperdev)),duration=mean(duration)) #### End # Plot msg=paste0("(inmem=",for_inmem,")") nread=max(exp$nread) label_at <- function(n) function(x) ifelse(x %% n == 0, x, ifelse (x==0,x,"")) ggplot(data,aes(x=time,y=nperdev,color=deviceid)) + geom_point(size=0.3) +geom_line() + xlab("Time (s)") + ylab(TeX(r'(Sample read frequency $f_r$)')) + facet_wrap(~usen,labeller = labeller(usen = c("1" = "With 1 ina260 in use", "2" = "With 2 ina260 in use", "3" = "With 3 ina260 in use", "4" = "With 4 ina260 in use")))+ scale_x_continuous(breaks = seq(0,3600,by=60),labels=label_at(60))+ scale_y_continuous(breaks = seq(0, max(data$nperdev), by = 1000),expand = expansion(mult = 0.1))+ #ggtitle(paste("Stop until",nread,"measurements are done", msg))+ labs(color="Device id")+ geom_vline(data=durations,aes(xintercept=duration,color=deviceid),linetype="dashed",show.legend = FALSE)+ geom_hline(data=med,aes(yintercept=median),show.legend = FALSE,size=0.3)+ geom_text(data=med,aes(x=duration/2,y=median,label=median),inherit.aes=FALSE,vjust=-0.55)+ theme(legend.position="top",legend.margin=margin(b = -0.2, unit='cm')) ggsave(paste0("figures/pure_read_inmem",for_inmem!=0,".pdf"),width=6,height=5.5) } TABLE_DELAY=function(exp,for_inmem=0){ delays=exp%>%filter(inmem==for_inmem)%>%group_by(usen,deviceid)%>%mutate(tsnsec=(nsecs*10e-10)+timestamp) delays=delays%>%group_by(usen,deviceid)%>%mutate(delay=tsnsec-lag(tsnsec,1,default=NA))%>%filter(!is.na(delay))%>%mutate(time=timestamp-startat) f=paste0("figures/fp_inmem",for_inmem,".txt") write("", f) delays%>%group_by(usen)%>%group_walk(function(data,grp){ cur_usen=grp$usen cdf=ecdf(data$delay) # Get CDF #### For fd fdefault=454.54 percent=1-cdf(1/fdefault) write(paste0("inmem=",for_inmem," usen=",cur_usen,": f=",fdefault,"Hz percent=",round(percent*100,digits=2),"%", " missings=",percent*length(data$delay)),f, append=TRUE) #### For fmax fmax=3571.429 percent=1-cdf(1/fmax) write(paste0("inmem=",for_inmem," usen=",cur_usen,": f=",fmax,"Hz percent=",round(percent*100,digits=2),"%", " missings=",percent*length(data$delay),"\n----"),f, append=TRUE) # plot(cdf,xlim=c(0,0.001)) }) } GG_READ_POWER=function(exp,for_inmem=0){ # Analyze exp=exp%>%filter(inmem==for_inmem)%>%mutate(time=timestamp-startat+nsecs*1e-9) nread=max(exp$nread) msg=paste0("(inmem=",for_inmem,")") data=exp%>%group_by(usen,deviceid)%>%mutate(duration=endat-startat) # Plot label_at <- function(n) function(x) ifelse(x %% n == 0, x, ifelse (x==0,x,"")) ggplot(data,aes(x=time,y=power,color=deviceid)) + geom_point(size=0.3) +geom_line() + xlab("Time (s)") + ylab("Power consumption (W)") + facet_wrap(~usen,labeller = labeller(usen = c("1" = "With 1 ina260 in use", "2" = "With 2 ina260 in use", "3" = "With 3 ina260 in use", "4" = "With 4 ina260 in use")))+ scale_x_continuous(breaks = seq(0,3600,by=60),labels=label_at(60)) + ggtitle(paste("Stop until",nread,"measurements are done", msg)) ggsave(paste0("figures/pure_read_inmem",for_inmem!=0,"_power.pdf"),width=10) } TABLE_READ_POWER=function(exp){ power_0x40<<-median((exp%>%filter(addr=="0x40"))$power) power_0x41<<-median((exp%>%filter(addr=="0x41"))$power) power_0x42<<-median((exp%>%filter(addr=="0x42"))$power) power_0x43<<-median((exp%>%filter(addr=="0x43"))$power) power_0x40_std<<-round(sd((exp%>%filter(addr=="0x40"))$power),digits=2) power_0x41_std<<-round(sd((exp%>%filter(addr=="0x41"))$power),digits=2) power_0x42_std<<-round(sd((exp%>%filter(addr=="0x42"))$power),digits=2) power_0x43_std<<-round(sd((exp%>%filter(addr=="0x43"))$power),digits=2) f="figures/power_median.txt" write(paste0("1Kohm resistor 0x40: ",power_0x40,"W(",power_0x40_std,")"), f) write(paste0("Raspberri Pi 3 model B (2016) 0x41: ",power_0x41,"W(",power_0x41_std,")"), f, append=TRUE) write(paste0("Raspberri Pi 3 model B+ (2017) 0x42: ",power_0x42,"W(",power_0x42_std,")"), f, append=TRUE) write(paste0("Raspberry Pi 4 model B (2018) 0x43: ",power_0x43,"W(",power_0x43_std,")"), f, append=TRUE) } GG_ZMQ_PERF=function(exp){ ##### Analyze data=exp%>%group_by(usen,deviceid,timestamp)%>%summarize(nperdev=n(),duration=max(duration))%>%mutate(time=timestamp-min(timestamp)) data=data%>%group_by(usen,deviceid)%>%mutate(startat=min(timestamp),endat=max(timestamp)) jean <<- data ##### Now complete missing measurements (say no value on at time 5 then a row with a zero at that time must be added) data=data%>%group_by(usen,deviceid)%>%complete(timestamp=seq(min(startat),min(startat)+max(duration),by=1),fill=list(nperdev=0))%>%mutate(startat=min(startat,na.rm=TRUE),endat=max(startat,na.rm=TRUE),time=timestamp-startat) #### Now compute additional metrics med=data%>%group_by(usen)%>%summarize(median=round(median(nperdev)),duration_real=max(timestamp)-min(timestamp)) #### Plot label_at <- function(n) function(x) ifelse(x %% n == 0, x, ifelse (x==0,x,"")) ggplot(data,aes(x=time,y=nperdev,color=deviceid))+geom_point()+geom_line()+ facet_wrap(~usen,labeller = labeller(usen = c("1" = "With 1 ina260 in use", "2" = "With 2 ina260 in use", "3" = "With 3 ina260 in use", "4" = "With 4 ina260 in use")))+ scale_x_continuous(breaks = seq(0,3600,by=60),labels=label_at(60))+ scale_y_continuous(breaks = seq(0, max(data$nperdev), by = 1000),expand = expansion(mult = 0.1))+ geom_hline(data=med,aes(yintercept=median),show.legend = FALSE,size=0.3)+ geom_text(data=med,aes(x=duration_real/2,y=median,label=median),inherit.aes=FALSE,vjust=-0.55)+ #ggtitle(paste("Running zmq experiment for",unique(exp$duration),"s"))+ labs(color="Device id")+ xlab("Time (s)") + ylab(TeX(r'(Sample read frequency $f_r$)'))+ theme(legend.position="top",legend.margin=margin(b = -0.2, unit='cm')) ggsave("figures/zmq.pdf") } TABLE_DELAY(pure_read,0) TABLE_DELAY(pure_read,1) GG_DELAY_READ(pure_read,0) GG_DELAY_READ(pure_read,1) GG_READ_POWER(pure_read,0) GG_READ_POWER(pure_read,1) GG_READ_PERF(pure_read,0) GG_READ_PERF(pure_read,1) GG_ZMQ_PERF(zmq) TABLE_READ_POWER(pure_read)