
User Manual
— ESDS v0.0.1 —

September 14, 2022

> ./esds

ESDS an Extensible Simulator for Distributed Systems

Written by Loic Guegan and Issam Raïs

Contents

1 Architecture of ESDS 2

2 Getting started 2
2.1 Platform file . 2
2.2 Node implementation file . 3
2.3 Execution . 3
2.4 Custom orchestrator instantiation . 3

3 Platform file 4
3.1 The general section . 4
3.2 The node section . 4

1

1 Architecture of ESDS

Node1

Noden
Event Loop

Network

Simulation Orchestrator (SO)

Simulated Node (SN)

Synchronisation

Synchronisation

Figure 1: Simulation architecture used by ESDS

ESDS simulator comprises two major components: 1) The Simulation Orchestrator (SO) 2) The
Simulated Nodes (SN). This architecture is depicted in Figure 1. The SO is the main process in
charge of implementing the simulation main loop. It instantiates the network (e.g bandwidths and
latencies), collects and processes the events (e.g communications,turn on/off). On the other hand,
nodes are threads that implement the node behaviors.

2 Getting started

To run a simulation, at least 2 files are required: 1) a platform file 2) a node implementation source
code. The platform file defines the simulated network platform (network links and performances
etc.) and sets various simulation parameters. The node implementation source code provides the
logic of the simulated nodes.

2.1 Platform file

Platform files are written in YAML and contains 3 sections namely: 1) general 2) nodes 3) interfaces.
The general section is optional but all the other sections must be present. Here is an example of a
simple platform file to simulate 2 wireless nodes:

assets/platform.yaml

general:
interferences: on # Turns on interferences

nodes:
count: 2
implementations:

- all node.py
arguments: {

"0": "sender",
"1": "receiver"

}

interfaces:
wlan0:

2

type: "wireless"
links:

- all 50kbps 0s all # All nodes are reachable by each other
txperfs:

- all 50kbps 0s

2.2 Node implementation file

Nodes implementations are written using python. Here is the implementation of the node mentioned
in the last platform.yaml file:

assets/node.py

def execute(api):
role=api.args # "sender" or "receiver" cf. platform.yaml
if role == "sender":

api.send("wlan0","MY MESSAGE",10,None)
else:

api.receive("wlan0")

2.3 Execution

To run our first simulation, the following command can be run: that contains platform.yaml and
node.py:

> esds run platform.yaml

Here is the output of the simulation:

[t=0.000,src=n0] Send 10 bytes on wlan0
[t=0.002,src=n1] Receive 10 bytes on wlan0
[t=0.002,src=esds] Simulation ends

In this case, simulation tooks 0.002s and 10 bytes were sent on the wlan0 interface from node 0
(src=n0) to node 1 (src=n1).

2.4 Custom orchestrator instantiation

Instead of using a platform.yaml file, it is possible to instantiate manually the esds orchestrator. To
do so, you need to implement that procedure in a python file. Here is and example that performs the
exact same simulation presented in Section 2.3 but with a custom instantiation of the orchestrator:

assets/orchestrator.py

#!/usr/bin/env python

import esds
import numpy as np

3

n=2 # 2 nodes
B=np.full((n,n),50*1000) # Bandwith+txperfs 5bps
L=np.full((n,n),0) # Latency 0s

s=esds.Simulator({"wlan0":{"bandwidth":B, "latency":L, "is_wired":False}})

Instantiate nodes with their implementation
s.create_node("node",args="sender") # Use node.py for the first node with "sender" as argument
s.create_node("node",args="receiver") # Now the second node

Run the simulation
s.run(interferences=True)

Next we can run the simulation:

> ./orchestrator.py

3 Platform file

As explain in Section 2.1, esds platform files comprise 3 sections:

1. general: to settings up esds

2. nodes: to configure the simulated nodes

3. interfaces: to create network the interfaces available for each nodes

Lets see in details the format of each section.

3.1 The general section

This section is used to settings up the overall parameters of esds. Table 1 reference all the keywords
for this section of the platform file.

3.2 The node section

The node section is used configure the simulated node of esds. Table 2 references all the keywords
used in the nodes section.

Several entries in the platform file use a range syntax to map informations (node implemen-
tations, links etc.) to node ids. Indeed, when running a simulation with p nodes, each node will
have an allocated id such that id ∈ [0, 1, ..., p − 1]. Here are examples of valid range syntax for a
simulation that uses 5 nodes:

• 0,1,2,3 Node 0,1,2 and 3

• 0-2 Node 0,1 and 2

• all Node 0,1,2,3 and 4

• 2-@ Node 2,3 and 4

• 0-@ Node 0,1,2,3 and 4 (same as all)

4

Keyword Description Example

interferences
Turn on/off interferences de-
tection during wireless com-
munications

interferences: on

debug Turn on/off esds debugging
mode (generate a debug file)

debug: on

debug_file Specify the file to use as out-
put for the debugging

debug_file: "./myfile.txt"

breakpoints

Specify a list of simulated
time (in seconds) at which
esds must interrupt and call
the specified callback

breakpoints: [5, 6, 7]

breakpoints_every

Specify an interval of time (in
seconds) at which esds will in-
terrupt and call the specified
callback

breakpoints_every: 5

breakpoints_callback
Tell esds where how to reach
the callback used during
breakpoints

breakpoints_callback:
file: "platform_callback.py"
callback: "callback"

Table 1: Usable keywords in the general section of a esds platform file.

Keyword Description Example

count Number of simulated nodes nodes: 5

implementations
Bind each node to their re-
spective implementation (uses
the range syntax)

implementations:
- 0 sender.py
- 1-@ receiver.py

arguments

Define the arguments that
will be passed to each node
implementation (keys of each
element uses the range syn-
tax)

arguments: {
"all": 2

}

Table 2: Usable keywords in the nodes section of a esds platform file.

5

